-
公开(公告)号:CN110440984A
公开(公告)日:2019-11-12
申请号:CN201910754711.0
申请日:2019-08-15
Applicant: 北京控制工程研究所
IPC: G01M1/12
Abstract: 一种航天器质心偏差检测精度估算方法:(1)航天器相对于轨道坐标系x、y、z各轴做短时正负交替力偶方波序列激励机动进行质心检测时,给出了考虑轨道角速度贡献的机动轴垂直平面内质心检测总误差与随机误差的估计式;(2)综合(1)的误差估计式,给出了考虑轨道角速度贡献的三轴先后机动情形下质心检测的总误差统一估计式与随机误差统一估计式;(3)综合(1)的误差估计式,给出了考虑轨道角速度贡献的任意两轴先后机动情形的质心检测总误差统一估计式与随机误差统一估计式。这些估计式揭示出质心偏差检测精度指标的主要影响因素,并为设置合适的质心检测指标及细化质心检测方案提供指导。
-
公开(公告)号:CN106081167B
公开(公告)日:2019-04-09
申请号:CN201610676473.2
申请日:2016-08-16
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种省工质的磁控与喷气控制联合的高精度姿态控制方法,步骤为(1)根据三轴姿态误差和角速度误差,利用PID控制律计算期望控制力矩;(2)根据地磁感应强度矢量在卫星本体坐标系三轴坐标分量的实时分布确定哪些轴姿态实施磁控、哪些轴姿态实施喷气控制;(3)利用小扰动磁矩分配算法计算三轴磁矩,以充分满足磁控轴期望控制力矩,同时减小磁控所产生的干扰力矩;(4)利用喷气相平面算法计算喷气控制轴的喷气脉宽。本发明的姿态控制精度高,工质消耗低,计算简单,工程实现容易。
-
公开(公告)号:CN106081167A
公开(公告)日:2016-11-09
申请号:CN201610676473.2
申请日:2016-08-16
Applicant: 北京控制工程研究所
CPC classification number: B64G1/24 , B64G1/10 , B64G1/1021 , B64G1/105 , B64G1/32 , B64G2001/245 , B64G2700/00 , G05D1/0825
Abstract: 本发明涉及一种省工质的磁控与喷气控制联合的高精度姿态控制方法,步骤为(1)根据三轴姿态误差和角速度误差,利用PID控制律计算期望控制力矩;(2)根据地磁感应强度矢量在卫星本体坐标系三轴坐标分量的实时分布确定哪些轴姿态实施磁控、哪些轴姿态实施喷气控制;(3)利用小扰动磁矩分配算法计算三轴磁矩,以充分满足磁控轴期望控制力矩,同时减小磁控所产生的干扰力矩;(4)利用喷气相平面算法计算喷气控制轴的喷气脉宽。本发明的姿态控制精度高,工质消耗低,计算简单,工程实现容易。
-
公开(公告)号:CN104063582A
公开(公告)日:2014-09-24
申请号:CN201410240403.3
申请日:2014-05-30
Applicant: 北京控制工程研究所
Abstract: 一种面外面内分步实施的绕飞构型建立方法,指定主控航天器相对于目标航天器轨道面外运动幅值出现在特定地心纬度点上空,建立起主控航天器相对于目标航天器的面外相对运动;对面外相对运动采用CW制导策略进行微调,使面外相对运动幅值更加接近于标称值;基于指定的期望绕飞构型的面外、面内相对运动相位差,给出面内相对运动转移脉冲,最终建立起相应的绕飞构型。本发明指出,在面外面内相对运动相位差、绕飞面仰角与绕飞面方位角三个参数之间存在一个简洁的关系式。本发明适用于绕飞相对运动尺度为数百米到数十公里量级的情况,绕飞构型可任意设定,绕飞面仰角、方位角及基线长度等特征指标的实现精度高。
-
公开(公告)号:CN119929187A
公开(公告)日:2025-05-06
申请号:CN202411984342.1
申请日:2024-12-31
Applicant: 北京控制工程研究所
Abstract: 一种能耗最优的高精度磁控和推力器联合姿态控制方法,首先根据姿态控制量和姿态角速度控制量使用PD控制律计算期望控制力矩,并结合重力梯度力矩估计进行力矩补偿,同时根据角速度测量信息结合重力梯度力矩估计和上周期理论磁控力矩估计,对卫星剩磁矩进行滤波估计,然后根据卫星磁控轴/推力控制轴设置对卫星三轴控制进行分配,对推力控制的方向进行喷气相平面保护计算,并在必要时进行喷气脉宽输出,对磁控的方向根据地磁场信息和期望控制力矩进行小扰动磁矩分配计算,并结合上述剩磁矩估计结果进行磁矩补偿,进行三轴磁矩输出,最后根据三轴磁矩计算的结果进行理论磁控力矩估计,用于下周期的计算。
-
公开(公告)号:CN111641400B
公开(公告)日:2023-07-14
申请号:CN202010377606.2
申请日:2020-05-07
Applicant: 北京控制工程研究所
IPC: H03H17/02
Abstract: 本发明给出了一般CIC滤波器组的幅频与相频响应表达式,并给出两种对其频响特性进行有理多项式传递函数等效的方法,成功实现了无拖曳控制器的频域设计与闭环控制系统的快速仿真。其中,低频高精度等效法在低频段可以实现很高的等效精度,但存在高频上翘现象。通过引入高阻滤波可抑制这种上翘,使得控制系统分析、设计得以正常进行。高频幅频包络等效法等效结果一般比较简单,给控制系统分析、设计与快速仿真都带来很大便利;仅在在低频段局部存在一定误差。本发明属于基于CIC滤波器组的控制技术及信号处理技术领域。
-
公开(公告)号:CN113219820B
公开(公告)日:2023-02-24
申请号:CN202110348696.7
申请日:2021-03-31
Applicant: 北京控制工程研究所
IPC: G05B11/42
Abstract: 本发明涉及一种利用无拖曳控制提取惯性传感器负刚度力零位的方法:建立非保守外干扰力加速度随轨道位置变化的数据表;在不考虑姿态运动影响前提下,建立最一般形式的位移模式单自由度无拖曳控制动力学方程;建立检验质量受扰力为位移线性函数情形下的位移模式单自由度无拖曳控制动力学方程;以卫星惯性传感器电极室形心到检验质量质心的位移矢量作为被控状态参数,得到控制对象的传递函数;引入PD控制器Gc(s),构建位移模式无拖曳控制系统;在该单自由度方向非保守外干扰力稳定的轨道弧段,对卫星进行位移模式无拖曳PD控制,获取位移模式无拖曳PD控制系统的稳态响应数据,并由此得到无拖曳PD控制稳态位移静差xsd;最后计算得到负刚度力零位xfns0。
-
公开(公告)号:CN115630474A
公开(公告)日:2023-01-20
申请号:CN202211063586.7
申请日:2022-08-31
Applicant: 北京控制工程研究所
IPC: G06F30/20 , G06F111/04 , G06F111/10 , G06F119/14
Abstract: 本发明提供了一种引力波探测日心编队拖曳控制系统设计方法,包括以下步骤,建立引力波探测日心编队航天器在拖曳控制下的原理性数值仿真轨道动力学模型;计算并根据编队构型稳定性指标调整初轨参数;构建引力波探测日心编队拖曳控制系统;确定各位移模式拖曳控制回路中惯性传感器的关键指标;计算各位移模式拖曳控制对象的最大负刚度系数,确定惯性传感器的极限传递函数模型;确定对各航天器的推进系统在三个拖曳控制自由度的最大推力需求;根据设计指标完成各拖曳控制器设计。本发明能够在不中断科学探测的情况下,一方面保证参考质量位移偏差所导致的加速度增量满足引力波探测所设定的PSD指标,另一方面有效提高探测编队构型稳定性。
-
公开(公告)号:CN115356913A
公开(公告)日:2022-11-18
申请号:CN202210957786.0
申请日:2022-08-10
Applicant: 北京控制工程研究所
IPC: G05B11/42
Abstract: 本发明提供了一种基于检验质量加速度PSD指标的无拖曳控制系统设计方法,包括以下步骤:基于无拖曳控制系统检验质量加速度PSD指标要求所指定频段的上确界频率设计PID参数、控制刷新率与PID控制器中微分环节所串联的惯性环节的时间常数;核算无拖曳控制系统的检验质量加速度PSD设计值在指定频段上是否满足指标要求,减小推进时间常数和/或降低噪声包络参数,并相应调整PID参数和控制刷新率,直至无拖曳控制系统的稳定裕度满足指标要求且其检验质量加速度PSD设计值在指定频段上满足指标要求;输出满足要求的设计参数。本发明基于外扰力噪声加速度PSD包络建立检验质量加速度PSD指标表达式,给出位移无拖曳控制系统的系统性设计方法。
-
公开(公告)号:CN114675666A
公开(公告)日:2022-06-28
申请号:CN202210345639.8
申请日:2022-03-31
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种非线性扰动下无拖曳动力学协调条件确定方法及控制方法,首先,建立位移模式单自由度无拖曳控制动力学方程及负刚度力加速度函数;随后,给出建造位移模式无拖曳控制系统的基本动力学协调条件;在不满足基本动力学协调条件的情况下,从位移模式单自由度无拖曳控制动力学方程退化得到一个切换动力学方程;通过建立该切换动力学方程的Hamilton函数,导出切换动力学方程的全局动力学分界线相轨迹的解析表达式,形象地给出了无拖曳推力器最大推力不足时的位移模式无拖曳控制让步动力学协调条件;最后,在位移模式单自由度无拖曳控制满足让步动力学协调条件的情况下,给出避免指令推力为最大推力的检验质量初始状态及指令状态设置方法。
-
-
-
-
-
-
-
-
-