-
公开(公告)号:CN116597245A
公开(公告)日:2023-08-15
申请号:CN202310401225.7
申请日:2023-04-13
IPC: G06V10/774 , G06V10/82 , G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种图像识别模型训练方法与系统、图像处理方法与系统,在预训练第一神经网络模型基础上,通过训练图像样本在第一神经网络模型和第二神经网络模型中间层的第一中间层特征表达与第二中间层特征进行通道匹配,并基于匹配通道之间的知识蒸馏得到第一损失函数,同时还结合基于预测类别标签信息和软标签构建的第二损失函数以及基于预测类别标签信息和真实标签构建的第三损失函数对第二神经网络模型进行联合训练,这样可以实现两模型通道之间的自动匹配,增强第二神经网络模型获取的知识表达的判别性,进而提升图像识别精度。基于该图像识别模型进行的图像识别也大大提升了图像识别准确性。
-
公开(公告)号:CN115953822A
公开(公告)日:2023-04-11
申请号:CN202310202394.8
申请日:2023-03-06
IPC: G06V40/16 , G06V40/10 , G06V20/00 , G06V10/82 , G06N3/0464 , G06N3/0442 , G06N3/08
Abstract: 本发明公开一种基于rPPG生理信号的人脸视频鉴伪方法和装置,该方法包括以下步骤:步骤一:采集人脸视频与手指PPG信号,构建PPG信号视频数据集;搜集真实人脸视频与伪造人脸视频,构建鉴伪数据集;步骤二:使用PPG信号视频数据集作为训练数据,训练得到rPPG信号提取网络;步骤三:使用鉴伪数据集,利用步骤二训练得到的rPPG信号提取网络提取rPPG信号,后输入二元决策网络并进行网络训练;步骤四:使用通过步骤二训练获得的rPPG信号提取网络和步骤三训练获得的二元决策网络,对待检测的视频进行真伪判断。本发明使用难以伪造的rPPG生理信号用于分辨人脸伪造合成视频,可以有效提升判断准确率。
-
公开(公告)号:CN115331732B
公开(公告)日:2023-03-28
申请号:CN202211238697.7
申请日:2022-10-11
Applicant: 之江实验室
IPC: G16B20/30 , G16B40/00 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了基于图神经网络的基因表型训练、预测方法及装置,根据现有公开的基因位点与表型的相关性,构建图神经网络:节点代表基因位点,边代表两个基因位点同时与某个表型相关,且边的权重代表基因位点之间的关联程度;采集样本的基因数据,并收集各个样本对应的表型数据;训练过程中,对输入的基因数据基于其位点探测概率值进行编码;将编码数据输入构建的图神经网络;采用均匀采样进行节点邻域选择,并通过邻域节点的权重与卷积核参数更新各个节点;将每个节点的输出结果进行拼接,并将其输入多层感知器,输出表型分类结果;将分类结果与真值进行比较,训练与验证图神经网络;再将待分类的基因数据输入训练好的图神经网络进行表型分类。
-
公开(公告)号:CN115040089A
公开(公告)日:2022-09-13
申请号:CN202210981128.5
申请日:2022-08-16
Abstract: 本发明涉及非接触式生理信号检测领域,尤其涉及一种基于深度学习的脉搏波峰值检测与分类的方法和装置,该方法包括:步骤一,利用血氧仪采集人体指尖的脉搏波信号,采用滑动窗口的方式进行分帧处理,得到若干段短信号;步骤二,将若干段短信号按照时间顺序排列,输入到关键点检测模块中进行峰值检测和整理得到所有峰值点;步骤三,将步骤二得到的峰值点及采集得到的整段脉搏波信号输入到分类模块中,通过判断信号的强度、波动和平涩程度来对脉搏波信号进行分类,并记录。本发明能够有效应用于基于脉搏波的生物识别系统中,并提高识别的准确率。
-
公开(公告)号:CN118569207B
公开(公告)日:2024-11-08
申请号:CN202411017441.2
申请日:2024-07-29
Applicant: 之江实验室
IPC: G06F40/126 , G06N3/0455
Abstract: 一种基于预生成token的星载大模型投机解码方法和装置,其方法包含:步骤1)离线预生成所有token的下一个token,得到预生成token字典对;步骤2)推理时,通过步骤1)猜测之后的token序列,并使用文本生成模型进行验证猜测到的序列,在模型在线推理生成token的时候,依据token字典对进行token查询,猜测生成之后的token,在线验证token预生成模块猜测得到的token正确性,当验证成功之后,即接受猜测的token,从而实现大模型token解码的加速生成。本发明在线推理时进行token查询猜测,并进行验证,提高大模型每一次推理时得到的正确token数量,从而加快token的生成速度。
-
公开(公告)号:CN118569207A
公开(公告)日:2024-08-30
申请号:CN202411017441.2
申请日:2024-07-29
Applicant: 之江实验室
IPC: G06F40/126 , G06N3/0455
Abstract: 一种基于预生成token的星载大模型投机解码方法和装置,其方法包含:步骤1)离线预生成所有token的下一个token,得到预生成token字典对;步骤2)推理时,通过步骤1)猜测之后的token序列,并使用文本生成模型进行验证猜测到的序列,在模型在线推理生成token的时候,依据token字典对进行token查询,猜测生成之后的token,在线验证token预生成模块猜测得到的token正确性,当验证成功之后,即接受猜测的token,从而实现大模型token解码的加速生成。本发明在线推理时进行token查询猜测,并进行验证,提高大模型每一次推理时得到的正确token数量,从而加快token的生成速度。
-
公开(公告)号:CN118555406A
公开(公告)日:2024-08-27
申请号:CN202411007714.5
申请日:2024-07-25
Applicant: 之江实验室
IPC: H04N19/44 , H04N19/186 , H04N19/132 , H04N19/182 , H04N19/89 , H04N7/20
Abstract: 本说明书公开了一种星载遥感图像的压缩方法和解压缩方法,在本说明书提供的星载遥感图像的压缩方法中,获取由卫星的星载传感器采集的多个谱段图组成的遥感图像,根据图像压缩编码器的配置,确定图像压缩编码器中不进行下采样的编码通道,作为目标编码通道。将该全零图输入非目标编码通道,将各谱段图分别输入目标编码通道,以通过图像压缩编码器,对各谱段图进行压缩,确定遥感图像的压缩数据,将压缩数据下传至地面接收站。在本方法中,为适配图像压缩编码器的压缩原理,对进行下采样的编码通道输入全零图,从而使图像压缩传感器能够压缩星载传感器获取的遥感图像,解决了星载传感器与图像压缩传感器的兼容问题。
-
公开(公告)号:CN117058492A
公开(公告)日:2023-11-14
申请号:CN202311322535.6
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V20/70 , G06N3/09 , G06N5/04
Abstract: 一种基于学习解耦的两阶段训练病害识别方法和系统,其方法包括:步骤S1:采集待识别作物的图像样本,制作训练数据集;步骤S2:构造基于学习解耦的分类算法网络模型;步骤S3:对基于学习解耦的分类算法模型进行一阶段训练;步骤S4:固定部分权重,对基于学习解耦的分类算法模型进行二阶段训练;步骤S5:基于训练得到的基于学习解耦的分类算法模型进行推理,最终得到待分类目标叶片的病害种类和病害等级。本发明具有准确度高,标注成本极低,且可实现单模型对病害种类和病害等级进行细分类识别。
-
公开(公告)号:CN116884481A
公开(公告)日:2023-10-13
申请号:CN202310697601.1
申请日:2023-06-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G16B20/30 , G06N3/0464 , G06N3/0895 , G16B20/00
Abstract: 一种基于图卷积神经网络与自监督重构学习的基因到表型预测方法和系统,该方法基于图卷积神经网络的方法,将每个品种的大豆作为图节点,大豆的基因序列为节点的特征,利用每个品种大豆之间的亲缘关系作为图的边,将构建的图输入图卷积神经网络与自监督重构网络中,更新节点特征,实现大豆基因到表型的预测。本发明创新性的利用图卷积神经网络实现基因到表型的预测,利用自监督学习降低基因维度,并将品种之间的亲缘关系作为先验关联不同品种指导基因到表型挖掘,提高表型预测的效果。
-
公开(公告)号:CN116721412A
公开(公告)日:2023-09-08
申请号:CN202310406872.7
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/68 , G06V10/82 , G06V10/774 , G06V10/776 , G06V10/40 , G06N3/0464 , G06N3/09
Abstract: 一种自下而上的基于结构性先验的豆荚关键点检测方法,自定义不同类型豆荚中豆粒的关键点含义,构建了包含主干网络、豆粒位置置信度热力图子网络、部位亲和域子网络、结构先验子网络四部分的自下而上的豆粒关键点检测网络,可实现先利用位置置信度检测得到所有的豆粒位置,然后结合部位亲和域积分计算,利用匈牙利算法得到豆粒之间的最优匹配连接关系,从而提取到豆荚的数量和豆荚的类型。特别的,在训练阶段通过添加结构先验子网络,提升模型的准确率。还包括一种自下而上的基于结构性先验的豆荚关键点检测系统。本发明从豆荚形态上确定豆荚类型,可快速同时检测多个豆荚,并定位得到豆荚中每个豆粒的位置。
-
-
-
-
-
-
-
-
-