一种基于舵面效率的飞行器控制方法

    公开(公告)号:CN114444214A

    公开(公告)日:2022-05-06

    申请号:CN202210359128.1

    申请日:2022-04-07

    Abstract: 本发明公开了一种基于舵面效率的飞行器控制方法,涉及飞行器控制领域,包括:生成飞行器的第一物理空间网格;基于第一流场和第一物理空间网格进行计算获得第一力矩系数;调整操纵面的舵偏角,生成飞行器的第二物理空间网格;基于第二流场和第二物理空间网格进行计算获得第二力矩系数;基于第一力矩系数、第二力矩系数和舵偏角的变化量计算获得操纵面的舵面效率;重复执行上述步骤获得多个不同舵偏角下的操纵面的舵面效率;改变所述初始参数的数值,重复上述步骤直至获得多个不同初始参数条件下的舵面效率;飞行器控制系统基于舵面效率对飞行器的姿态进行实时控制;本发明能够降低计算代价,更加高效的实现飞行器的控制。

    基于分段VHS模型的碰撞参数计算方法及系统及装置及介质

    公开(公告)号:CN112949102B

    公开(公告)日:2021-07-13

    申请号:CN202110532960.2

    申请日:2021-05-17

    Abstract: 本发明公开了一种基于分段VHS模型的碰撞参数计算方法及系统及装置及介质,涉及稀薄气体动力学数值模拟领域,构建分段VHS模型,包括若干个子VHS模型;将气体分子的碰撞对相对速度划分为若干个碰撞对相对速度区间;每个碰撞对相对速度区间对应一个子VHS模型;建立碰撞对相对速度区间与子VHS模型的粘性‑温度指数之间的第一对应关系;获得第一气体分子的第一碰撞对相对速度及对应的第一碰撞对相对速度区间;基于第一对应关系,获得第一碰撞对相对速度区间对应的第一粘性‑温度指数;基于第一子VHS模型计算获得第一气体分子的碰撞参数,本发明能够快速且准确的计算获得气体分子的碰撞参数。

    基于可压缩流动的解析壁面函数的数值模拟方法

    公开(公告)号:CN110489709A

    公开(公告)日:2019-11-22

    申请号:CN201910705306.X

    申请日:2019-08-01

    Abstract: 本发明公开了一种基于可压缩流动的解析壁面函数的数值模拟方法,包括:根据可压缩流动特点建立Navier-Stockes方程,并进行简化,然后解析得到全湍流区速度方程、粘性底层速度方程、全湍流区温度方程和粘性底层温度方程,并进一步定义应力方程和热流方程;给定粘性底层温度Tv的初值,并根据Tv计算得到应力和热流;利用计算得到的应力和热流更新应力项和热流项;再通过计算湍动能生成项和湍动能耗散项的平均量更新湍动能方程中的生成项和耗散项的值;最后利用粘性底层温度方程重新计算Tv,在下个时间步循环中重复进行更新。本发明基于可压缩流动特点,特别适合于高超声速流动,可以更加准确的预测壁面热流。

    适用于多量阶非线性加权方法的光滑因子量阶调节方法

    公开(公告)号:CN119026523B

    公开(公告)日:2025-01-24

    申请号:CN202411497810.2

    申请日:2024-10-25

    Abstract: 本发明公开了适用于多量阶非线性加权方法的光滑因子量阶调节方法,涉及高阶格式非线性加权领域,包括:基于精度K选取非等距模板集;分别计算获得非等距模板集中的3个子模板的光滑因子;确定最长子模板上的光滑因子量阶调节器;根据光滑因子量阶调节器和光滑因子,计算得到修正后的最长子模板上光滑因子;确定最短子模板上的光滑因子量阶调节器;根据光滑因子量阶调节器和光滑因子,计算得到修正后的最短子模板上光滑因子;获得3个子模板最终的光滑因子;本发明能够确保非线性加权高阶格式精度,且修正光滑因子计算的非线性权与控制方程的量纲无关。

    一种高速飞行器微波纹结构表面及其设计方法

    公开(公告)号:CN118665708B

    公开(公告)日:2024-11-05

    申请号:CN202411157119.X

    申请日:2024-08-22

    Abstract: 本发明涉及高速空气动力学技术领域,具体公开了一种高速飞行器微波纹结构表面及其设计方法;包括多组设置在飞行器表面且沿气流方向依次连接的微波纹结构单元;多组所述微波纹结构单元结构相同,包括呈竖向设置的侧面、与侧面的底部连接的底面、与底面远离侧面一侧连接的曲面、以及与曲面远离底面一侧连接的上表面;所述侧面与飞行器表面或相邻的微波纹结构单元中的上表面远离曲面的一侧连接;所述侧面设置在靠近气流上游的一侧。以及公开了其设计方法;本发明利用微波纹结构形成的微尺度涡流,降低高速气流与飞行器表面之间的摩擦,实现高速飞行器关键位置的减阻降热,从而提高飞行器的航程和红外隐身特性。

Patent Agency Ranking