-
公开(公告)号:CN117636179A
公开(公告)日:2024-03-01
申请号:CN202311478183.3
申请日:2023-11-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/13 , G06V10/774 , G06V10/80 , G06T7/136 , G06T7/194
Abstract: 本发明涉及数字图像处理技术领域,且公开了一种全局特征交互变化检测方法,具体是指:利用采集设备获取同一区域两个时期的影像数据;原始数据集进行数据预处理;构建孪生网络模型;在孪生网络模型的输入层进行特征融合并得到相应层级的特征表示;比较两个时期的相应层级的特征表示判断该层级特征表示是否存在变化;对层级特征表示存在变化的区域进行变化分割并评估;评估变化检测不合格率;对变化检测不合格的区域进行排除问题点;将变化检测的结果进行可视化展示;有利于两期影像的特征在网络浅层就开始交互,使得网络的每一层都参与语义变化信息的学习大大的提升了网络性能,还提高了语义变化区域的检出率。
-
公开(公告)号:CN118918475B
公开(公告)日:2025-04-18
申请号:CN202410983698.7
申请日:2024-07-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/10 , G06V20/52 , G06V10/26 , G06V10/40 , G06V10/42 , G06V10/54 , G06V10/58 , G06V10/762 , G06V10/764 , G06V10/77 , G06V10/80
Abstract: 本发明公开了一种多维度多尺度遥感与地形特征融合的耕地非农化智能监测方法,步骤1、获取高分辨率影像、高光谱影像、DEM数据、耕地真值矢量数据、已调查监测的耕地矢量数据;步骤2、分割和聚类超像素地物对象;步骤3、以超像素地物对象为单位,提取各超像素地物对象范围内的特征;步骤4、将训练区提取的各特征组合成每个超像素地物对象的特征向量,构建超像素耕地对象训练样本数据;步骤5、训练耕地对象识别模型;步骤6、提取测试区耕地;步骤7、基于提取的测试区耕地和已调查监测的耕地矢量数据,利用空间叠置分析自动提取耕地变为非耕地的图斑,对该图斑进行优化、过滤筛选出耕地非农化图斑。本发明具有实操性、便捷性、可行性等优势。
-
公开(公告)号:CN117726687A
公开(公告)日:2024-03-19
申请号:CN202311851986.9
申请日:2023-12-29
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种融合实景三维与视频的视觉重定位方法,包括基于高空云台和连接所述高空云台的摄像机实时获取视频流和摄像机的位姿,并对所述视频流进行视频帧图像预处理;基于所述摄像机的历史监控视频和实景三维数据作为输入,标定出的视频帧图像的位姿信息,并构建出带有图像特征信息和对应三维空间信息的视觉特征库;采用SIFT算法对包含目标点的视频帧进行特征点提取,将所述特征点输入所述视觉数据库查询特征点对应的一组2D‑3D点对;对所述2D‑3D点对采用solvePnP算法来计算出对应目标点的摄像机的位姿,并用RANSAC算法剔除异常值;采用投影变换,将目标点的2D坐标投影转换为目标点的三维坐标。通过视觉重定位技术计算目标点位置,提高了视觉定位的精度和效率。
-
公开(公告)号:CN117011698A
公开(公告)日:2023-11-07
申请号:CN202310753327.5
申请日:2023-06-25
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/26 , G06V20/70 , G06V10/82
Abstract: 本发明公开了一种多维度和多模型的地表全覆盖解译样本集评价方法,步骤1:构建地表覆盖解译样本集评价指标;步骤2:建立指标打分模型和泛化性评价模型;步骤3:将待评价样本集分别训练指标打分模型和泛化性评价模型,指标打分模型得到各评价指标得分;步骤4:对各评价指标得分进行交叉综合分析并加权计算得出指标评分;步骤5:构建泛化性评估测试数据集;步骤6:在泛化性评估测试数据集对泛化性评价模型进行测试,得到泛化性评分;步骤7;建立指标评分和泛化性评分的评级,若评级不同,则取较低评级为最终样本集评价。本发明从样本集自身特性和模型训练泛化性两个角度出发,使得地表覆盖解译样本集的评价更加有效、客观。
-
公开(公告)号:CN110427836B
公开(公告)日:2020-12-01
申请号:CN201910625252.6
申请日:2019-07-11
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 曾安明 , 李朋龙 , 丁忆 , 胡翔云 , 张泽烈 , 胡艳 , 段伦豪 , 张觅 , 李晓龙 , 段松江 , 罗鼎 , 吴凤敏 , 刘金龙 , 刘建 , 黄印 , 陈雪洋 , 钱进 , 魏文杰 , 张黎 , 黄潇莹
Abstract: 本发明公开了一种基于多尺度优化的高分辨率遥感影像水体提取方法,包括如下步骤:搭建待训练卷积神经网络,基于该网络从输入遥感影像中提取多尺度特征,从最低分辨率的特征中获取初始粗糙水体分割结果;通过擦除注意力方法,结合多尺度特征和初始分割结果,输出全分辨率下的水体提取结果;构建多尺度损失函数,获得训练好的卷积神经网络;将待提取的高分辨率遥感影像输入训练好的网络,得到水体提取结果。该方法通过对具有真实水体标注的遥感影像训练数据集进行学习与训练,通过擦除注意力机制的引导,结合多尺度优化策略,在显著提高了总体水体提取精度的同时,还加强了对细小水体的识别与提取。
-
公开(公告)号:CN111079604A
公开(公告)日:2020-04-28
申请号:CN201911243920.5
申请日:2019-12-06
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 丁忆 , 李朋龙 , 罗鼎 , 张泽烈 , 李晓龙 , 肖禾 , 马泽忠 , 段松江 , 刘金龙 , 王亚林 , 吴凤敏 , 钱进 , 刘朝晖 , 曾远文 , 魏文杰 , 林熙 , 范文武 , 刘建 , 黄印 , 卢建洪
Abstract: 本发明公开了一种面向大尺度遥感图像的微小目标快速检测方法,包括步骤:利用轻量级的残差结构构建Tiny-Net模块,并对输入的遥感图像进行特征图提取;搭建全局注意力模块;在全局注意力模块后依次连接分类器与检测器,并利用分类器检测当前输入图像块中的目标;对检测出的目标采用k-means聚类方法得到k个尺度的先验框;使用区域提案网络得到提案区域,并采用位置敏感的ROI池化对提案区域进行池化;训练网络,并利用训练好的网络对新输入的遥感图像进行微小目标的精确检测定位。其显著效果是:实现了快速精确的检测大尺度遥感图像中的微小目标,使得对大尺度遥感图像的目标实时检测成为可能。
-
公开(公告)号:CN110427836A
公开(公告)日:2019-11-08
申请号:CN201910625252.6
申请日:2019-07-11
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 曾安明 , 李朋龙 , 丁忆 , 胡翔云 , 张泽烈 , 胡艳 , 段伦豪 , 张觅 , 李晓龙 , 段松江 , 罗鼎 , 吴凤敏 , 刘金龙 , 刘建 , 黄印 , 陈雪洋 , 钱进 , 魏文杰 , 张黎 , 黄潇莹
Abstract: 本发明公开了一种基于多尺度优化的高分辨率遥感影像水体提取方法,包括如下步骤:搭建待训练卷积神经网络,基于该网络从输入遥感影像中提取多尺度特征,从最低分辨率的特征中获取初始粗糙水体分割结果;通过擦除注意力方法,结合多尺度特征和初始分割结果,输出全分辨率下的水体提取结果;构建多尺度损失函数,获得训练好的卷积神经网络;将待提取的高分辨率遥感影像输入训练好的网络,得到水体提取结果。该方法通过对具有真实水体标注的遥感影像训练数据集进行学习与训练,通过擦除注意力机制的引导,结合多尺度优化策略,在显著提高了总体水体提取精度的同时,还加强了对细小水体的识别与提取。
-
公开(公告)号:CN113159122A
公开(公告)日:2021-07-23
申请号:CN202110280016.2
申请日:2021-03-16
Applicant: 重庆市地理信息和遥感应用中心 , 中南大学
IPC: G06K9/62
Abstract: 本发明公开了基于社交媒体图像数据的城市风貌分析方法,方法包括:获取社交媒体图像数据;对数据集的样本进行分类和去除噪声;使用卷积神经网络进行风貌学习;对样本不平衡问题进行处理;进行迁移学习;对风貌特征进行聚类;计算城市间的风貌距离;分析城市间的风貌相似性及城市的细粒度风貌。本发明将城市风貌编码为一组向量;解决了社交媒体图像分布的不均衡问题;利用城市风貌向量定义了城市风貌距离,使用该距离能分析出不同城市如何表象出风貌相似和风貌相近的,能分析出风貌距离和地理距离的相关性;使用城市风貌向量为嵌入向量的聚类方法,能够更细致地发现城市细粒度风貌。
-
公开(公告)号:CN115019123A
公开(公告)日:2022-09-06
申请号:CN202210555496.3
申请日:2022-05-20
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心
IPC: G06V10/774 , G06V10/778 , G06V10/82 , G06V10/764 , G06K9/62 , G06V20/10 , G06V20/70 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种遥感图像场景分类的自蒸馏对比学习方法,包括:由结构一样的教师网络和学生网络组成长程依赖捕获主干网络模块;获取遥感图像并将图像进行全局切片、局部切片、尺度对齐及数据增强,得到同一张图像的融入尺度信息的不同版本;将全局切片图像送入教师网络、将全局切片图像和尺度对齐后的局部切片图像共同送入学生网络进行自蒸馏对比学习;获得不同版本的图片表征,再经过softmax将表征转化为概率分布,训练网络使学生网络输出的概率分布尽量匹配教师网络输出的概率分布;采用自蒸馏的方式训练神经网络模型;输出场景分类结果。本发明不依赖标签和负样本,可捕捉RSI的全局语义信息,可学习到RSI的多尺度特征。
-
公开(公告)号:CN113159122B
公开(公告)日:2022-03-15
申请号:CN202110280016.2
申请日:2021-03-16
Applicant: 重庆市地理信息和遥感应用中心 , 中南大学
IPC: G06K9/62 , G06V10/764 , G06V10/774 , G06V10/74 , G06V10/762
Abstract: 本发明公开了基于社交媒体图像数据的城市风貌分析方法,方法包括:获取社交媒体图像数据;对数据集的样本进行分类和去除噪声;使用卷积神经网络进行风貌学习;对样本不平衡问题进行处理;进行迁移学习;对风貌特征进行聚类;计算城市间的风貌距离;分析城市间的风貌相似性及城市的细粒度风貌。本发明将城市风貌编码为一组向量;解决了社交媒体图像分布的不均衡问题;利用城市风貌向量定义了城市风貌距离,使用该距离能分析出不同城市如何表象出风貌相似和风貌相近的,能分析出风貌距离和地理距离的相关性;使用城市风貌向量为嵌入向量的聚类方法,能够更细致地发现城市细粒度风貌。
-
-
-
-
-
-
-
-
-