-
公开(公告)号:CN115019123A
公开(公告)日:2022-09-06
申请号:CN202210555496.3
申请日:2022-05-20
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心
IPC: G06V10/774 , G06V10/778 , G06V10/82 , G06V10/764 , G06K9/62 , G06V20/10 , G06V20/70 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种遥感图像场景分类的自蒸馏对比学习方法,包括:由结构一样的教师网络和学生网络组成长程依赖捕获主干网络模块;获取遥感图像并将图像进行全局切片、局部切片、尺度对齐及数据增强,得到同一张图像的融入尺度信息的不同版本;将全局切片图像送入教师网络、将全局切片图像和尺度对齐后的局部切片图像共同送入学生网络进行自蒸馏对比学习;获得不同版本的图片表征,再经过softmax将表征转化为概率分布,训练网络使学生网络输出的概率分布尽量匹配教师网络输出的概率分布;采用自蒸馏的方式训练神经网络模型;输出场景分类结果。本发明不依赖标签和负样本,可捕捉RSI的全局语义信息,可学习到RSI的多尺度特征。
-
公开(公告)号:CN115019123B
公开(公告)日:2023-04-18
申请号:CN202210555496.3
申请日:2022-05-20
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心
IPC: G06V10/774 , G06V10/778 , G06V10/82 , G06V10/764 , G06V20/10 , G06V20/70 , G06N3/0455 , G06N3/047 , G06N3/0895 , G06N3/091 , G06N3/096
Abstract: 本发明公开了一种遥感图像场景分类的自蒸馏对比学习方法,包括:由结构一样的教师网络和学生网络组成长程依赖捕获主干网络模块;获取遥感图像并将图像进行全局切片、局部切片、尺度对齐及数据增强,得到同一张图像的融入尺度信息的不同版本;将全局切片图像送入教师网络、将全局切片图像和尺度对齐后的局部切片图像共同送入学生网络进行自蒸馏对比学习;获得不同版本的图片表征,再经过softmax将表征转化为概率分布,训练网络使学生网络输出的概率分布尽量匹配教师网络输出的概率分布;采用自蒸馏的方式训练神经网络模型;输出场景分类结果。本发明不依赖标签和负样本,可捕捉RSI的全局语义信息,可学习到RSI的多尺度特征。
-
公开(公告)号:CN116342738B
公开(公告)日:2023-08-29
申请号:CN202310083918.6
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供一种基于GIS的禁捕矢量范围自动提取和图示制作方法,包括:通过获取制图区域范围内的河流数据、禁捕范围起止点和制图数据,对禁捕范围起止点进行矢量化,并合并获取的河流数据,得到有效河流数据,根据有效河流数据提取并简化目标河流中心线,根据禁捕范围起止点与目标河流中心线,获取对应的两条垂线,并基于两条垂线对有效河流数据进行裁剪,得到禁捕矢量范围,构建制图模板,设置地图制图参数,确定地图的分割单元,在分割单元中,结合禁捕矢量范围和制图参数,基于制图模板生成禁捕范围图示。本发明能够实现禁捕矢量范围的快速准确提取,获取精准的禁捕范围图示,简化了禁捕范围图示的生成方法,提高了工作效率。
-
公开(公告)号:CN118445434A
公开(公告)日:2024-08-06
申请号:CN202410603023.5
申请日:2024-05-15
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06F16/435 , G06F16/487 , G06F16/483 , G06F40/284 , G06F40/295 , G06F40/211
Abstract: 本发明提供一种基于多源社交媒体数据的自然资源督察线索提取方法,包括:基于自然资源督察工作主题确定督察线索的关键词,根据所述关键词采集与其匹配的多源社交媒体数据;基于光学字符识别方法,提取所述多源社交媒体数据中的文本信息;对所述文本信息进行成分句法分析,根据所述工作主题提取分析结果中的地名命名实体;将所述地名命名实体作为搜索关键词,搜索得到与所述地名命名实体匹配的空间位置;将所述空间位置与对应管理数据的空间坐标进行统一,并进行叠加筛选,输出得到线索提取结果。本发明能够实时灵活地获取自然资源督察线索,且具有客观性,还能够自动化实施,大幅节省了人力资源和时间成本。
-
公开(公告)号:CN118918475B
公开(公告)日:2025-04-18
申请号:CN202410983698.7
申请日:2024-07-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/10 , G06V20/52 , G06V10/26 , G06V10/40 , G06V10/42 , G06V10/54 , G06V10/58 , G06V10/762 , G06V10/764 , G06V10/77 , G06V10/80
Abstract: 本发明公开了一种多维度多尺度遥感与地形特征融合的耕地非农化智能监测方法,步骤1、获取高分辨率影像、高光谱影像、DEM数据、耕地真值矢量数据、已调查监测的耕地矢量数据;步骤2、分割和聚类超像素地物对象;步骤3、以超像素地物对象为单位,提取各超像素地物对象范围内的特征;步骤4、将训练区提取的各特征组合成每个超像素地物对象的特征向量,构建超像素耕地对象训练样本数据;步骤5、训练耕地对象识别模型;步骤6、提取测试区耕地;步骤7、基于提取的测试区耕地和已调查监测的耕地矢量数据,利用空间叠置分析自动提取耕地变为非耕地的图斑,对该图斑进行优化、过滤筛选出耕地非农化图斑。本发明具有实操性、便捷性、可行性等优势。
-
公开(公告)号:CN112862774A
公开(公告)日:2021-05-28
申请号:CN202110140476.5
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
公开(公告)号:CN117036756A
公开(公告)日:2023-11-10
申请号:CN202310994138.7
申请日:2023-08-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V10/75 , G06V10/74 , G06V10/82 , G06N3/0455
Abstract: 本发明公开了一种基于变分自动编码器的遥感图像匹配方法及系统,包括:步骤S1:获取遥感影像图像上的待匹配图像块;步骤S2:利用变分自编码器提取所述待匹配图像块和对应遥感影像底图的特征,获得所述待匹配图像块和所述遥感影像图像的各兴趣点集;步骤S3:将各所述兴趣点集进行特征尺度和主导方向分配;步骤S4:使用归一化互相关匹配算法对所述步骤S3中特征尺度和主导方向分配后的兴趣点集进行匹配,得到匹配度矩阵得分,根据所述匹配度矩阵得分确定最佳匹配区域。本发明提高了遥感图像匹配的精度和工作效率。
-
公开(公告)号:CN116342738A
公开(公告)日:2023-06-27
申请号:CN202310083918.6
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供一种基于GIS的禁捕矢量范围自动提取和图示制作方法,包括:通过获取制图区域范围内的河流数据、禁捕范围起止点和制图数据,对禁捕范围起止点进行矢量化,并合并获取的河流数据,得到有效河流数据,根据有效河流数据提取并简化目标河流中心线,根据禁捕范围起止点与目标河流中心线,获取对应的两条垂线,并基于两条垂线对有效河流数据进行裁剪,得到禁捕矢量范围,构建制图模板,设置地图制图参数,确定地图的分割单元,在分割单元中,结合禁捕矢量范围和制图参数,基于制图模板生成禁捕范围图示。本发明能够实现禁捕矢量范围的快速准确提取,获取精准的禁捕范围图示,简化了禁捕范围图示的生成方法,提高了工作效率。
-
公开(公告)号:CN118918475A
公开(公告)日:2024-11-08
申请号:CN202410983698.7
申请日:2024-07-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/10 , G06V20/52 , G06V10/26 , G06V10/40 , G06V10/42 , G06V10/54 , G06V10/58 , G06V10/762 , G06V10/764 , G06V10/77 , G06V10/80
Abstract: 本发明公开了一种多维度多尺度遥感与地形特征融合的耕地非农化智能监测方法,步骤1、获取高分辨率影像、高光谱影像、DEM数据、耕地真值矢量数据、已调查监测的耕地矢量数据;步骤2、分割和聚类超像素地物对象;步骤3、以超像素地物对象为单位,提取各超像素地物对象范围内的特征;步骤4、将训练区提取的各特征组合成每个超像素地物对象的特征向量,构建超像素耕地对象训练样本数据;步骤5、训练耕地对象识别模型;步骤6、提取测试区耕地;步骤7、基于提取的测试区耕地和已调查监测的耕地矢量数据,利用空间叠置分析自动提取耕地变为非耕地的图斑,对该图斑进行优化、过滤筛选出耕地非农化图斑。本发明具有实操性、便捷性、可行性等优势。
-
公开(公告)号:CN117036756B
公开(公告)日:2024-04-05
申请号:CN202310994138.7
申请日:2023-08-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V10/75 , G06V10/74 , G06V10/82 , G06N3/0455
Abstract: 本发明公开了一种基于变分自动编码器的遥感图像匹配方法及系统,包括:步骤S1:获取遥感影像图像上的待匹配图像块;步骤S2:利用变分自编码器提取所述待匹配图像块和对应遥感影像底图的特征,获得所述待匹配图像块和所述遥感影像图像的各兴趣点集;步骤S3:将各所述兴趣点集进行特征尺度和主导方向分配;步骤S4:使用归一化互相关匹配算法对所述步骤S3中特征尺度和主导方向分配后的兴趣点集进行匹配,得到匹配度矩阵得分,根据所述匹配度矩阵得分确定最佳匹配区域。本发明提高了遥感图像匹配的精度和工作效率。
-
-
-
-
-
-
-
-
-