-
公开(公告)号:CN110828193A
公开(公告)日:2020-02-21
申请号:CN201911212683.6
申请日:2019-12-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种纳米花状Ni-MOF材料,原料为乙酸镍,对苯二甲酸,十二烷基硫酸钠(SDS)和溶剂DMF、去离子水、无水乙醇,通过溶剂热法原位生长制得;所得纳米花状Ni-MOF材料具有纳米花结构,纳米花结构的直径为5-20微米。其制备方法包括以下步骤:步骤1)原料的准备;步骤2)溶剂热法制备Ni-MOF材料。作为超级电容器电极材料的应用,在0-0.5 V范围内充放电,在放电电流密度为1 A/g时,比电容为802-990 F/g。具有合成所需设备具有易操作,低成本,性能稳定,低危险性等优点,该合成方法适合工业化,在超级电容器领域具有广阔的应用前景。
-
公开(公告)号:CN117399047A
公开(公告)日:2024-01-16
申请号:CN202311595441.6
申请日:2023-11-28
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种镍掺杂氮化物催化剂及其制备方法和应用,所述催化剂中Ni、Mo、N为催化剂成分,由厚度为100‑200nm的贝壳状纳米片组成。其制备方法为一步水热和管式炉煅烧得到Ni/Mo2N,另外还公开了一种镍掺杂氮化物催化剂掺杂MgH2的储氢材料作为储氢领域的应用:在氩气条件下,将Ni/Mo2N与MgH2混合后进行正反转球磨。所得基于Ni/Mo2N的MgH2基储氢材料作为储氢材料的应用,Ni/Mo2N的摻杂量为6wt%,初始脱氢温度为175℃‑186℃;在265℃下脱氢量为5.4wt%‑5.9wt%;在75℃下的吸氢量为3.1wt%‑3.6wt%;10次循环后的保持率为97‑98%。
-
公开(公告)号:CN116374950A
公开(公告)日:2023-07-04
申请号:CN202310273090.0
申请日:2023-03-20
Applicant: 桂林电子科技大学
IPC: C01B3/00 , C01G23/053 , C01G23/08 , B82Y30/00 , H01M4/90 , B01J23/755 , B22F1/054 , B22F1/12 , B22F9/24 , B82Y40/00
Abstract: 本发明公开了一种花簇状Ni3Fe/TiO2复合材料,由花簇状TiO2和在其表面原位制备的Ni3Fe颗粒的组成,花簇状TiO2为先制备TiO2/SiO2,再制备成空心花簇状TiO2;TiO2/SiO2的微观形貌为尺寸为50‑70nm的空心球状;花簇状TiO2的微观形貌为尺寸为200‑500nm的中空花簇状结构;尺寸为3‑5μm的Ni3Fe颗粒负载于花簇状TiO2表面。其制备方法包括以下步骤:1,TiO2/SiO2前体的制备;2,花簇状TiO2的制备;3,花簇状Ni3Fe/TiO2复合材料的制备。公开了一种基于Ni3Fe/TiO2的MgH2基储氢材料的制备方法:在氩气条件下,将Ni3Fe/TiO2与MgH2混合后进行正反转球磨。所得基于Ni3Fe/TiO2的MgH2基储氢材料作为储氢材料的应用,Ni3Fe/TiO2的摻杂量为5wt%,初始脱氢温度为155‑175℃;在300℃条件下的脱氢量为6.9‑7.1wt%;在100℃条件下的吸氢量为4.2‑4.8wt%;15次循环后的保持率为96‑98%。
-
公开(公告)号:CN112844427A
公开(公告)日:2021-05-28
申请号:CN202110241316.X
申请日:2021-03-04
Applicant: 桂林电子科技大学
IPC: B01J27/185 , B01J35/10 , B01J37/34 , B01J37/16 , C01B32/198 , C01B32/194 , C01B3/04
Abstract: 本发明公开了一种Co‑B‑P‑O纳米粒子负载还原氧化石墨烯复合材料,通过改进的Hummers的方法得到氧化石墨烯材料,然后通过化学原位还原的方法将Co‑B‑P‑O负载到还原氧化石墨烯上,得到Co‑B‑P‑O纳米粒子负载还原氧化石墨烯复合材料,其比表面积为62‑120 m2g‑1,孔径分布为12‑14 nm。其制备方法包括以下步骤:1,氧化石墨烯纳米片载体的制备;2,Co‑B‑P‑O纳米粒子负载还原氧化石墨烯复合材料的制备。作为硼氢化钠水解催化剂的应用,在298 K下提供的最大放氢速率达到9036.3 mL•min‑1g‑1,放氢量为理论值的100%,催化放氢的活化能为Ea=28.64 kJ•mol‑1;10次循环使用后仍保留了其对硼氢化钠水解初始催化活性的88.9%。本发明具有高催化性能、高循环性能、工艺简单、反应周期短的特点。
-
公开(公告)号:CN110436408A
公开(公告)日:2019-11-12
申请号:CN201910881054.6
申请日:2019-09-18
Applicant: 桂林电子科技大学
IPC: C01B3/00 , C01B32/921 , C01B6/24
Abstract: 本发明公开了一种二维碳化钛掺杂氢化铝钠储氢材料,由氢化铝钠和二维碳化钛Ti2C混合机械球磨制得;所述的二维碳化钛Ti2C呈现二维片状堆叠结构。其制备方法包括:1)二维Ti2C制备;2)二维碳化钛掺杂氢化铝钠储氢材料的制备。作为储氢领域的应用,催化剂掺杂量为1 wt%时,体系放氢温度降至45℃,放氢量达到6.0 wt%;当催化剂掺杂量为9 wt%时,体系放氢温度降至92℃,放氢量达到5.4 wt%。本发明具有以下优点:1、有效地改善氢化铝钠的放氢性能,在温和条件下具有更高的储氢容量和放氢速率。初始放氢温度降至45℃,放氢量达到6.0 wt%;2、Ti2C作为催化剂与氢化铝钠储氢材料更为匹配;3、具有成本低廉、制备工艺简单、反应可控等优点。
-
公开(公告)号:CN119456045A
公开(公告)日:2025-02-18
申请号:CN202411616935.2
申请日:2024-11-13
Applicant: 桂林电子科技大学
IPC: B01J31/36 , C01B3/00 , C08G83/00 , B01J31/22 , B01J23/20 , B01J35/40 , B01J35/54 , B01J35/30 , B01J37/08 , B01J37/03 , B01J37/10
Abstract: 本发明公开了一种Nb2O5掺杂纳米圆盘状MOF衍生复合材料的制备及其应用,所述复合材料中主要成分是Nb、Ti和O,扫描电子显微下形貌呈直径100‑300nm,厚度为50‑70nm的圆盘状纳米片。其制备方法是通过水热法和管式炉煅烧得到Nb2O5/MIL‑125复合材料,公开了一种基于Nb2O5/MIL‑125的MgH2基储氢材料的制备方法:在充满氩气的手套箱中,将Nb2O5/MIL‑125与MgH2混合后进行双向球磨。得到基于Nb2O5/MIL‑125的MgH2基储氢材料作为储氢材料的应用,其中当Nb2O5/MIL‑125的掺杂量为6wt%时,起始脱氢温度为160℃‑170℃;在250℃下的脱氢量为5.0wt%‑5.2wt%;在100℃下的吸氢量为4.9wt%‑5.1wt%;经过10次循环后的保持率为95‑97%;脱氢反应活化能降低了50.05kJ/mol。
-
公开(公告)号:CN119034744A
公开(公告)日:2024-11-29
申请号:CN202411380732.8
申请日:2024-09-30
Applicant: 桂林电子科技大学
IPC: B01J23/755 , B01J35/51 , C01B3/00
Abstract: 本发明公开了一种珊瑚球状NiO/NiFe2O4催化剂及其制备方法和应用,所述催化剂中Ni、Fe、O为催化剂成分,由直径为3‑4μm的微球组成。其制备方法为一步水热和马弗炉煅烧得到NiO/NiFe2O4,公开了一种NiO/NiFe2O4的MgH2基储氢材料的制备方法:在氩气条件下,将NiO/NiFe2O4与MgH2混合后进行正反转球磨。所得基于NiO/NiFe2O4的MgH2基储氢材料作为储氢材料的应用,NiO/NiFe2O4的摻杂量为6wt%,初始脱氢温度为175℃‑189℃;在325℃下脱氢量为6.5wt%‑6.9wt%;在75℃下的吸氢量为4.0wt%‑4.7wt%;10次循环后的保持率为97‑98%。
-
公开(公告)号:CN110436408B
公开(公告)日:2023-03-24
申请号:CN201910881054.6
申请日:2019-09-18
Applicant: 桂林电子科技大学
IPC: C01B3/00 , C01B32/921 , C01B6/24
Abstract: 本发明公开了一种二维碳化钛掺杂氢化铝钠储氢材料,由氢化铝钠和二维碳化钛Ti2C混合机械球磨制得;所述的二维碳化钛Ti2C呈现二维片状堆叠结构。其制备方法包括:1)二维Ti2C制备;2)二维碳化钛掺杂氢化铝钠储氢材料的制备。作为储氢领域的应用,催化剂掺杂量为1 wt%时,体系放氢温度降至45℃,放氢量达到6.0 wt%;当催化剂掺杂量为9 wt%时,体系放氢温度降至92℃,放氢量达到5.4 wt%。本发明具有以下优点:1、有效地改善氢化铝钠的放氢性能,在温和条件下具有更高的储氢容量和放氢速率。初始放氢温度降至45℃,放氢量达到6.0 wt%;2、Ti2C作为催化剂与氢化铝钠储氢材料更为匹配;3、具有成本低廉、制备工艺简单、反应可控等优点。
-
公开(公告)号:CN114700105A
公开(公告)日:2022-07-05
申请号:CN202210531744.0
申请日:2022-05-17
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种Co‑Mo‑B/N‑PCN复合纳米材料,以聚丙烯腈和聚苯乙烯为原料,经静电纺丝和煅烧得到氮掺杂多孔碳纳米纤维N‑PCN载体,然后,将可溶性钼盐和可溶性钴盐通过硼氢化钠溶液原位还原到N‑PCN载体上,最后,进行冷冻干燥即可制得。具有非晶态结构,其比表面积为60‑110 m2·g‑1;介孔尺寸为10‑18nm。具有磁性,能被磁铁吸引,可以通过磁性进行回收循环利用,回收率为99.6‑100%。其制备方法包括以下步骤:1,氮掺杂多孔碳纳米纤维载体的制备;2,Co‑Mo‑B/N‑PCN复合纳米材料的制备;3,Co‑Mo‑B/N‑PCN复合纳米材料的冷冻干燥。作为硼氢化物水解制氢催化剂的应用,水解放氢速率为2500‑3500 mol·mL‑1·g‑1;活化能Ea为30‑38 kJ·mol‑1。磁力回收、5次循环回收率达到80%,保持初次产氢速率的70‑90%。
-
公开(公告)号:CN113828345A
公开(公告)日:2021-12-24
申请号:CN202111321445.6
申请日:2021-11-09
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种氯化钠辅助合成g‑C3N4光催化剂的制备方法,包括如下步骤:1)称取三聚氰胺溶于去离子水中,室温下搅拌均匀,加入稀硝酸进行蚀刻,将白色沉淀用无水乙醇洗涤,然后60℃真空干燥,取出研磨充分置于坩埚中,在马弗炉中600℃保温2~4小时,记作CN;2)取不同重量比的氯化钠与CN研磨充分,再次置于马弗炉中400℃煅烧,最后用去离子水洗涤去除氯化钠并干燥,即得到氯化钠辅助合成g‑C3N4光催化剂。本发明还公开了g‑C3N4光催化剂的制备方法制得的g‑C3N4光催化剂及g‑C3N4光催化剂在罗丹明b中的应用。这种催化剂提高了氮化碳的比表面积,减少了氮化碳的电荷转移内阻,增强了其在可见光下降解罗丹明b的活性。
-
-
-
-
-
-
-
-
-