一种Fe3O4包覆多孔碳纳米球及其制备方法和应用

    公开(公告)号:CN118942923A

    公开(公告)日:2024-11-12

    申请号:CN202411261775.4

    申请日:2024-09-10

    Abstract: 本发明公开了一种Fe3O4包覆多孔碳纳米球,由Fe3O4包覆多孔碳结构组成的纳米球,其中,Fe3O4包覆多孔碳由三氯化铁与多孔碳混合后进行水热反应所得;多孔碳由ZIF‑8经高温煅烧所得;ZIF‑8由六水合硝酸锌、2‑甲基咪唑、甲醇、乙醇化学合成所得。ZIF‑8为正十二面体结构,表面光滑;多孔碳为正十二面体结构,表面粗糙;Fe3O4包覆多孔碳纳米球的为核壳纳米球结构。其制备方法包括以下步骤:1,ZIF‑8的制备;2,多孔碳的制备;3,Fe3O4包覆多孔碳纳米球的制备。作为超级电容器电极材料的应用时,当电流密度为0.5A g‑1时,充放电电压的范围为‑1‑0.5V和0‑2.1V;在功率密度为599.66W kg‑1条件下,能量密度为24.12Wh kg‑1;在电流密度为10A g‑1条件下,循环次数为10,000次,容量保持率为82.5%。

    一种基于含氯有机物和碱溶液预处理多孔碳材料的制备方法和应用

    公开(公告)号:CN115504467B

    公开(公告)日:2023-09-22

    申请号:CN202211257893.9

    申请日:2022-10-14

    Abstract: 本发明公开了一种基于含氯有机物和碱溶液预处理的多孔碳材料,以含氯有机物为碳源,采用碱溶液预处理的方法获得氮硫双掺杂前驱体,再经煅烧即可制得多孔碳材料;所述含氯有机物为聚氯乙烯,所述氮硫双掺杂前驱体中,以含氮化合物为氮源,含硫化合物为硫源;所述含氮化合物为DMF溶液,含硫化合物为硫脲。其制备方法包括以下步骤:1,含氯有机物的碱溶液预处理;2,前驱体的煅烧。作为超级电容器电极材料的应用,当电流密度为0.5A g‑1时,比电容的值在290‑300F g‑1。本发明具有以下优点:1、实现“白色污染”的回收再利用;2、同时实现脱氯和氮硫掺杂;3、通过二次造孔对孔结构进行调节;4、DMF溶液既起到溶剂的作用,又起氮源的作用。

    一种基于PBA-刻蚀-煅烧硫化法的镍钴双金属硫化物及其制备方法和应用

    公开(公告)号:CN116282236A

    公开(公告)日:2023-06-23

    申请号:CN202211680431.8

    申请日:2022-12-27

    Abstract: 本发明公开了一种基于PBA‑刻蚀‑煅烧硫化法的镍钴双金属硫化物,以六水合硝酸镍、钴氰化钾、二水合柠檬酸三钠为原料,首先,通过静置陈化法合成Ni‑Co‑PBA,然后,再经过氨水刻蚀处理后获得Ni‑Co‑Etch,最后,通过煅烧硫化即可。其微观形貌呈纳米立方结构,表面粗糙且中心位置向内凹陷,结构疏松,存在大量微孔,粒径尺寸为150‑250nm。其制备方法包括以下步骤:1,Ni‑Co‑PBA的制备;2,Ni‑Co‑PBA的刻蚀;3,Ni‑Co‑Etch的硫化处理。作为超级电容器电极材料的应用,在三电极体系中,比电容为1800‑1900F g‑1;在两电极体系中,功率密度为800‑850W kg‑1时,能量密度为60‑62Wh kg‑1;在10000圈循环后,循环稳定性保持为初始比电容的75‑85%。

    一种多面体结构钴硫化物负载NiGa-LDH电极材料及其制备方法和应用

    公开(公告)号:CN115274310A

    公开(公告)日:2022-11-01

    申请号:CN202210956639.1

    申请日:2022-08-10

    Abstract: 本发明提供了一种多面体结构钴硫化物负载NiGa‑LDH电极材料,以硝酸钴和2‑甲基咪唑为原料合成ZIF‑67,再用硫代乙酰胺对ZIF‑67进行硫化,将产物与硝酸镍、硝酸镓和尿素进行水热反应,即可得到微观形貌为多面体结构的钴硫化物负载镍镓双金属氢氧化物的电极材料;其由ZIF‑67经水热反应硫化后的钴硫化物多面体和在其表面原位生长的片状结构的镍镓双金属氢氧化物构成。其制备方法包括以下步骤:1,多面体结构ZIF‑67的制备;2,多面体结构钴硫化物Co3S4的制备;3,镍镓双金属氢氧化物NiGa‑LDH的原位制备和负载。作为超级电容器的应用,在0‑0.5 V范围内充放电,在放电电流密度为1 A/g时,比电容为1300‑1400 F/g;8 A/g相对于1 A/g下的电容保持率达到52%。

    一种海胆状微球钴镍基电极材料及其制备方法和应用

    公开(公告)号:CN114582636A

    公开(公告)日:2022-06-03

    申请号:CN202210378432.0

    申请日:2022-04-12

    Abstract: 本发明提供了一种海胆状微球钴镍基电极材料,以硝酸钴、硝酸镍和尿素为原料进行第一次水热反应,然后采用二段煅烧法进行煅烧,再与硝酸钴、硝酸镍、尿素进行第二次水热反应,即可得到由钴镍氧化物和层状双金属钴镍氢氧化物构成,呈海胆状微球结构的钴镍基电极材料;所述海胆状微球结构是由双金属调控得到钴镍基氢氧化物微球,通过煅烧以及水热反应,得到的钴镍基复合材料呈海胆状微球结构。其制备方法包括:钴镍氢氧化物微球的制备;钴镍氧化物微球的制备;层状双金属钴镍氢氧化物的原位制备和负载。作为超级电容器的应用,比电容为1400‑1500 F/g;电容保持率达到73%;在功率密度为807 W/kg,能量密度最高可达到26 Wh/kg。

    一种铁-氮活性位点的蜂窝状多孔碳材料及其制备方法和应用

    公开(公告)号:CN113422078A

    公开(公告)日:2021-09-21

    申请号:CN202110731107.3

    申请日:2021-06-30

    Abstract: 本发明公开了一种铁‑氮活性位点的蜂窝状多孔碳材料,通过一次高温煅烧的方法,由ZIF‑8、Fe(NO3)3∙9H2O和2,6‑二氨基吡啶制得,所制备的材料具有蜂窝状多孔结构,Fe及Fe3C纳米颗粒存在于多孔碳中;为介孔材料,其孔径分布在3‑5 nm之间,其比表面积为500‑510 m2/g‑1。其制备方法包括以下步骤:1)ZIF‑8的制备;2)前驱体的制备;3)铁‑氮活性位点的蜂窝状多孔碳材料的制备。作为氧化原电催化剂,在0.1 M KOH碱性条件下,起始电位为1.01 V;半波电位为0.92 V;3万秒后,电流保持为初始值得89%;在加入3 M甲醇的条件下后,电流仅下降5.3%,具备优异的抗甲醇性能。因此,本发明具有分级孔道结构及提高氧还原电催化性能,在燃料电池及锌空气电池领域具有广阔的应用前景。

    一种石墨烯-聚吡咯-金纳米粒子复合材料的制备方法及应用

    公开(公告)号:CN108760855B

    公开(公告)日:2020-07-17

    申请号:CN201810524155.3

    申请日:2018-05-28

    Abstract: 本发明公开了一种石墨烯‑聚吡咯‑金纳米粒子复合材料,采用原位化学聚合和静电吸附的相结合的方法,将金纳米粒子负载与石墨烯‑聚吡咯复合材料上。其制备方法包括以下步骤:1)溶液的配置;2)溶液的混合反应制备聚吡咯‑石墨烯米复合材料;3)金纳米粒子溶液的制备;4)金纳米粒子的吸附。石墨烯‑聚吡咯‑金纳米粒子复合材料的应用,用于阻抗型大肠杆菌生物传感器修饰电极的应用,检测大肠杆菌的线性范围为1×102~1×107 CFU/mL,最低检出限为100 CFU/mL。本发明所制备的阻抗型大肠杆菌生物传感器还具有操作简单、成本低廉、使用方便、选择性高等优点,因而在食品安全和临床分析等领域中具有巨大的潜在应用价值。

    一种锶掺杂含氮多孔碳材料及其制备方法和应用

    公开(公告)号:CN107546039B

    公开(公告)日:2019-06-04

    申请号:CN201710686777.1

    申请日:2017-08-11

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了一种锶掺杂含氮多孔碳材料,由葡萄糖、氨基脲、含锶无机盐和还原剂,经水热反应和处理后,加入碱性无机物溶液煅烧活化和处理后制得,其比表面积范围在2000~2485 m2 g‑1,平均孔径分布在1.178‑1.232 nm,且微孔含量超过92%。制备步骤包括:1)含锶前驱体的制备;2)含锶前驱体的活化;3)含锶前驱体的后处理。本发明材料作为超级电容器电极材料,在电流密度为0.5 A g‑1时,比电容值范围在319~424 F g‑1,具有良好的循环稳定性。本发明中锶的掺杂量大幅减少,同时提高了材料的比表面积,调控了孔径分布,有利于电子传输和电解液输运,并且提供赝电容;制备工艺简单,有利于实现批量生产,在超级电容器、燃料电池等领域具有良好的应用前景。

    一种高度石墨化的二维多洞碳纳米片制备方法和应用

    公开(公告)号:CN108520828A

    公开(公告)日:2018-09-11

    申请号:CN201810280474.4

    申请日:2018-04-02

    Abstract: 本发明公开了一种高度石墨化的二维多洞的碳纳米片,由酚醛树脂的合成原料和醋酸钙混合,制得掺杂有醋酸钙的酚醛树脂复合物,再经过高温碳化、酸洗、活化后得到。碳纳米片的直径为1-2μm,孔洞为直径为20-100 nm。其制备方法包括以下步骤:1)酚醛树脂和醋酸钙复合物的制备;2)高度石墨化的二维多洞的碳纳米片的制备。作为超级电容器电极材料的应用,在-1.0~0 V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到200-300 F/g。本发明制备工艺简单、成本低、效果好。采用钙代替过渡金属作为催化剂,易除去,提高了材料的导电性和电解质离子的迁移率;表现出优良的电化学特性和化学稳定性,在超级电容器材料领域具有广阔的应用前景。

Patent Agency Ranking