-
公开(公告)号:CN116246699B
公开(公告)日:2024-04-26
申请号:CN202211105940.8
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F16/36 , G06N3/0464
Abstract: 本发明公开了一种基于知识图谱的合成致死预测方法、设备及存储介质,该方法包括:基于知识图谱卷积网络获得第一基因特征;根据合成致死相互作用网络获得第二基因特征;计算所述第一基因特征和所述第二基因特征的向量内积,预测基因对的合成致死概率。由此解决了当前需要人工设计基因特征,以及无法通过建模合成致死相互作用背后机制的问题,在提升基因对的合成致死预测性能的同时,还提高了模型的可解释性。
-
公开(公告)号:CN117133436A
公开(公告)日:2023-11-28
申请号:CN202311346273.7
申请日:2023-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于多源数据融合的药物疾病关联预测方法、装置及设备,该方法包括:基于预设元路径在异构网络中进行随机单向游走获得源药物节点的邻域和目标疾病节点的邻域;计算邻域间的嵌入表示,确定虚拟节点之间的归一化的注意力系数;基于归一化的注意力系数确定的邻域间的相互作用表示的标准化注意力值;将标准化注意力值与虚拟节点的嵌入表示融合,将融合获得的药物疾病节点对间边的嵌入表示与对应的初始嵌入特征进行拼接,施加一个多层感知机获得药物疾病对的预测结果。如此,基于预设元路径进行随机游走取样,并基于邻域间嵌入表示、邻域内相互作用结果进行结果预测,提取了异构网络的丰富语义信息,提高模型对药物疾病的预测性能。
-
公开(公告)号:CN117393143A
公开(公告)日:2024-01-12
申请号:CN202311316888.5
申请日:2023-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于图表示学习的环状RNA‑疾病关联预测方法、移动设备及存储介质,该方法包括:基于环状RNA及相关信息构建环状RNA的异构网络,所述异构网络包括环状RNA节点和疾病节点;将异构网络中各个节点的特征随机初始化后输入图表示学习模型,通过所述图表示学习模型按预设流程学习各个节点的表示向量;基于环状RNA节点的表示向量和疾病节点的表示向量的内积确定为对应环状RNA与疾病的关联预测得分。如此,通过图表示学习模型学习异构网络中各个节点的表示向量,再基于环状RNA节点和疾病节点的表示向量的内积确定关联预测得分,提高了异构网络构建的灵活性,使得图表示学习模型能获得更丰富的节点表示,提高了环状RNA‑疾病预测的准确性。
-
公开(公告)号:CN116884473A
公开(公告)日:2023-10-13
申请号:CN202310581243.8
申请日:2023-05-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B15/20 , G16B40/00 , G06F18/214 , G06F18/241
Abstract: 本发明公开了一种蛋白质功能预测模型生成方法及装置,包括获取训练蛋白质的氨基酸三维原子坐标,并根据其进行图论方法生成蛋白质二维接触图;对训练蛋白质的氨基酸三维原子坐标进行算法处理获取第一特征矩阵,对蛋白质二维接触图进行算法处理获取第二特征矩阵,第一特征矩阵与训练蛋白质的氨基酸三维原子坐标中序列作用位点对应,第二特征矩阵与训练蛋白质的氨基酸三维原子坐标中结构作用折叠结构对应;根据第一特征矩阵和第二特征矩阵分别对应的数据标签训练预先构建的蛋白质功能分类器,得到蛋白质功能预测模型。通过将训练蛋白质的氨基酸结构和序列作为信息源提取特征,提高了预测模型对蛋白质功能的预测精度。
-
公开(公告)号:CN116246699A
公开(公告)日:2023-06-09
申请号:CN202211105940.8
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F16/36 , G06N3/0464
Abstract: 本发明公开了一种基于知识图谱的合成致死预测方法、设备及存储介质,该方法包括:基于知识图谱卷积网络获得第一基因特征;根据合成致死相互作用网络获得第二基因特征;计算所述第一基因特征和所述第二基因特征的向量内积,预测基因对的合成致死概率。由此解决了当前需要人工设计基因特征,以及无法通过建模合成致死相互作用背后机制的问题,在提升基因对的合成致死预测性能的同时,还提高了模型的可解释性。
-
公开(公告)号:CN112201346B
公开(公告)日:2024-05-07
申请号:CN202011086809.2
申请日:2020-10-12
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明涉及一种癌症生存期预测方法、装置、计算设备及计算机可读存储介质。所述癌症生存期预测方法,包括:获取待预测癌症患者的基因表达谱数据;将所述基因表达谱数据作为输入提供给训练好的神经网络预测模型,所述神经网络预测模型被训练基于癌症患者的基因表达谱数据而对所述癌症患者的生存期进行预测;获取所述神经网络预测模型的输出,得到待预测癌症患者的生存期预测结果。本发明在一定程度上缓解了过拟合的程度,可较为准确的适用于癌症预后生存状态的预测。
-
公开(公告)号:CN113611366B
公开(公告)日:2022-04-29
申请号:CN202110854545.9
申请日:2021-07-26
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种基于图神经网络的基因模块挖掘方法、装置、计算机设备。其中,所述方法包括:根据基因表达谱数据,构造基因共表达网络,和基于该构造的基因共表达网络,通过图神经网络方式,配置社区隶属度矩阵,以及基于该配置的社区隶属度矩阵,通过设定阈值的方式,生成已知模块。通过上述方式,能够实现通过图神经网络表示学习的方式配置社区归属矩阵,再通过设定阈值的方式生成已知模块,实现在基因模块挖掘结果上能够允许有密集连接的多个基因可归属于不同的模块。
-
公开(公告)号:CN109903812A
公开(公告)日:2019-06-18
申请号:CN201910133090.4
申请日:2019-02-22
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种基于信息熵的基因序列数字化实现方法及系统。其中,所述方法包括:输入脱氧核糖核酸DNA序列,设定滑动窗口的长度l及子串长度n,和根据该设定的滑动窗口的长度l,从该输入的脱氧核糖核酸DNA序列的第一个碱基开始,步长为1,和计算该设定的滑动窗口内的给定子串长度下的拓扑熵大小,赋值给该设定的滑动窗口内的碱基,和重复计算该设定的滑动窗口内的给定子串长度下的拓扑熵大小,赋值给该设定的滑动窗口内的碱基,直到到达该输入的脱氧核糖核酸DNA序列的最后一个碱基位置,和输出得到同该输入的脱氧核糖核酸DNA序列长度的数字序列。通过上述方式,能够实现预测基因序列中的外显子区域。
-
公开(公告)号:CN113611368B
公开(公告)日:2022-04-01
申请号:CN202110844660.8
申请日:2021-07-26
Applicant: 哈尔滨工业大学(深圳)
IPC: G16B40/30 , G16B40/20 , G16B25/10 , G06V10/762 , G06V10/764 , G06V10/774 , G06V10/77 , G06V10/82 , G06N3/04 , G06N3/08 , G06K9/62
Abstract: 本发明公开了一种基于2D嵌入的半监督单细胞聚类方法、装置、计算机设备。其中,所述方法包括:对每个细胞进行数据预处理,和将该经对数据预处理后的每个细胞的基因表达数据都使用2D嵌入的方式,生成一张张合成图像形成图像集,和将该图像集输入到自编码器模型中进行预训练和聚类,和基于该将该图像集输入到自编码器模型中进行预训练和聚类后的聚类结果,构建网络,并运用社区发现算法对该构建网络中的图像集数据进行分类,以及采用将基于卷积神经网络模型来配置的半监督神经网络,对该经分类后的图像集中的所有细胞图像数据进行特征提取,并对该提取的特征进行聚类。通过上述方式,能够实现提高在单细胞数据上进行聚类时的聚类效果。
-
公开(公告)号:CN114141375A
公开(公告)日:2022-03-04
申请号:CN202111504144.7
申请日:2021-12-10
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种异质图表示方法、异质图表示设备、移动设备及存储介质,该方法包括:基于元路径将同一向量空间的异构图转化为同构图,各个同构图的节点类型与其源节点相同;对所述同构图的每个节点的子图进行分解,获得多个因子图;采用双注意力机制对所述多个因子图进行邻居信息聚合,并拼接聚合后的特征信息,获得元路径的节点特征向量;对不同元路径的节点特征向量进行融合,获得异构图节点的节点嵌入。由此,将异构图转化为同构图后,对节点的子图进行分解获得大量的因子图,并通过双注意力机制对因子图进行邻居信息聚合,以获得该异构图的节点嵌入,进而得到了异构图全面、准确的信息,提高了机器学习中基于少量数据的信息提取的准确性和全面性。
-
-
-
-
-
-
-
-
-