-
公开(公告)号:CN113611368B
公开(公告)日:2022-04-01
申请号:CN202110844660.8
申请日:2021-07-26
Applicant: 哈尔滨工业大学(深圳)
IPC: G16B40/30 , G16B40/20 , G16B25/10 , G06V10/762 , G06V10/764 , G06V10/774 , G06V10/77 , G06V10/82 , G06N3/04 , G06N3/08 , G06K9/62
Abstract: 本发明公开了一种基于2D嵌入的半监督单细胞聚类方法、装置、计算机设备。其中,所述方法包括:对每个细胞进行数据预处理,和将该经对数据预处理后的每个细胞的基因表达数据都使用2D嵌入的方式,生成一张张合成图像形成图像集,和将该图像集输入到自编码器模型中进行预训练和聚类,和基于该将该图像集输入到自编码器模型中进行预训练和聚类后的聚类结果,构建网络,并运用社区发现算法对该构建网络中的图像集数据进行分类,以及采用将基于卷积神经网络模型来配置的半监督神经网络,对该经分类后的图像集中的所有细胞图像数据进行特征提取,并对该提取的特征进行聚类。通过上述方式,能够实现提高在单细胞数据上进行聚类时的聚类效果。
-
公开(公告)号:CN113611368A
公开(公告)日:2021-11-05
申请号:CN202110844660.8
申请日:2021-07-26
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种基于2D嵌入的半监督单细胞聚类方法、装置、计算机设备。其中,所述方法包括:对每个细胞进行数据预处理,和将该经对数据预处理后的每个细胞的基因表达数据都使用2D嵌入的方式,生成一张张合成图像形成图像集,和将该图像集输入到自编码器模型中进行预训练和聚类,和基于该将该图像集输入到自编码器模型中进行预训练和聚类后的聚类结果,构建网络,并运用社区发现算法对该构建网络中的图像集数据进行分类,以及采用将基于卷积神经网络模型来配置的半监督神经网络,对该经分类后的图像集中的所有细胞图像数据进行特征提取,并对该提取的特征进行聚类。通过上述方式,能够实现提高在单细胞数据上进行聚类时的聚类效果。
-