-
公开(公告)号:CN119341845A
公开(公告)日:2025-01-21
申请号:CN202411885356.8
申请日:2024-12-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L43/0876 , H04L43/04 , G06F18/211 , G06F18/23213 , G06F18/2433
Abstract: 本发明公开了一种网络流量检测方法、系统、电子设备及存储介质,方法包括对捕获到的网络流量提取流级别特征并对其进行独热编码,得到多维特征向量,利用kmeans算法对多维特征向量分别进行良性流量和恶意流量聚类,并生成子类标签;使用多质心对比自编码器对多维特征向量降维,得到嵌入特征向量;使用多层感知器对所述嵌入特征向量进行二分类,获取所述嵌入特征向量的良性类置信度和恶意类置信度,并确定置信度高对应的类为预测类;基于所述嵌入特征向量的子类质心和置信度筛选待检测样本,并利用筛选出的所述待检测样本优化所述多质心对比自编码器和所述多层感知器。本发明方法对正常流量和恶意流量具有持续高效的判别能力。
-
公开(公告)号:CN119229152A
公开(公告)日:2024-12-31
申请号:CN202411756558.2
申请日:2024-12-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/75 , G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895
Abstract: 本发明公开了一种基于密集感知图对比学习的子图匹配方法、系统、电子设备及存储介质,方法包括针对图数据集中的初始化子图,利用随机子图增强方法或密集子图增强方法获取正样本子图和非子图负样本;建立图表示学习嵌入模型,图表示学习嵌入模型基于图神经网络框架,利用图同构网络作为编码器,将图结构嵌入到高维度向量;将正样本子图和非子图负样本输入图表示学习嵌入模型并利用分类器验证结果。本发明方法将图对比学习融入子图匹配,以自监督学习方式避免了对大量标注数据的依赖;本发明提出的密集子图增强策略可以在保留数据内在属性的基础上,更好地对数据进行处理,提高模型对数据特征的学习能力,从而提升子图匹配的准确性和效率。
-
公开(公告)号:CN118972160B
公开(公告)日:2024-12-31
申请号:CN202411393075.0
申请日:2024-10-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/2431 , G06F18/2137
Abstract: 本发明公开一种基于图像的分布级概念漂移检测与适应方法及系统,包括对捕获的网络流量提取流级别特征并进行独热编码,使用对比自编码器对特征进行降维得到嵌入特征向量并分别计算训练集中正常类和异常类的质心,并采用中位数绝对偏差方法将测试集样本分为正常类、漂移类和异常类;使用tsne将样本对应的嵌入特征向量降维到二维可视化特征并进行归一化处理,用于将样本数据投影在黑白图上;采用黑白图差异化的方法筛选出待检测像素点集合,基于待检测像素点集合生成人工标记样本,并使用正则化进行增量学习,提高模型的检测效果。本发明以图像对比、增量、灵活的方式持续学习网络流量的分布特点,保护目标网络系统免受恶意攻击。
-
公开(公告)号:CN118972160A
公开(公告)日:2024-11-15
申请号:CN202411393075.0
申请日:2024-10-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/2431 , G06F18/2137
Abstract: 本发明公开一种基于图像的分布级概念漂移检测与适应方法及系统,包括对捕获的网络流量提取流级别特征并进行独热编码,使用对比自编码器对特征进行降维得到嵌入特征向量并分别计算训练集中正常类和异常类的质心,并采用中位数绝对偏差方法将测试集样本分为正常类、漂移类和异常类;使用tsne将样本对应的嵌入特征向量降维到二维可视化特征并进行归一化处理,用于将样本数据投影在黑白图上;采用黑白图差异化的方法筛选出待检测像素点集合,基于待检测像素点集合生成人工标记样本,并使用正则化进行增量学习,提高模型的检测效果。本发明以图像对比、增量、灵活的方式持续学习网络流量的分布特点,保护目标网络系统免受恶意攻击。
-
公开(公告)号:CN117095243B
公开(公告)日:2024-05-07
申请号:CN202311345466.0
申请日:2023-10-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/764 , H04L9/40 , G06V10/774 , G06V10/80 , G06V10/82 , G06V10/70 , G06V10/74 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/24 , G06F18/25 , G06F18/20 , G06N3/045 , G06N3/0895 , G06N3/096 , G06N3/084 , G06N3/0985 , G06F123/02
Abstract: 本发明提供一种基于分支融合策略的小样本类增量网络入侵检测方法,包括:步骤一:将采集到的网络流量样本进行拆分处理,处理后的网络流量样本被转化为灰度图像表示;步骤二:将网络流量样本的灰度图像输入到骨干网络ViT中用于自监督模式的预训练以提高特征嵌入的表示能力;步骤三:初始化基础会话分支分类器的投影层参数,用于训练初始的检测分类模型;步骤四:学习每个新会话分支分类器模块,进而使用分支融合策略关联基础会话和新会话分支分类器从而帮助分类器模型完成训练和推理。本发明的有益效果是:本发明方法在不会遗忘已学习攻击类别的情况下,允许以增量、小样本、灵活的方式持续学习新攻击类别,实现保护目标网络系统免受恶意攻击。
-
公开(公告)号:CN116318929A
公开(公告)日:2023-06-23
申请号:CN202310206593.6
申请日:2023-03-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L41/0631 , H04L41/16
Abstract: 本发明涉及网络安全技术领域,特别涉及一种基于安全告警数据的攻击策略抽取方法。其方法包括以下步骤:S1.从告警文本中获取攻击者的单步攻击信息;S2.构建攻击活动序列集;S3.构建候选攻击策略;S4.构建攻击策略数据集;S5.预训练;S6.模型训练;S7.攻击策略抽取;S8.人工验证。本方法通过训练模型来判断攻击者的一个候选攻击策略是否为全部的有效攻击步骤,并且这些攻击步骤的组合能完成攻击者的攻击目的;通过这个模型,能够使用枚举候选攻击策略的方式关联出攻击者的全部有效攻击步骤,组成攻击者的攻击策略,而无需定义大量的关联规则;而且在过去的关联经验中未被关联的两个告警也可能被本方法所关联。
-
公开(公告)号:CN115842684B
公开(公告)日:2023-05-12
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
公开(公告)号:CN115842684A
公开(公告)日:2023-03-24
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
公开(公告)号:CN119299129A
公开(公告)日:2025-01-10
申请号:CN202411255263.7
申请日:2024-09-09
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国电子科技集团公司第五十四研究所
IPC: H04L9/40 , G06F18/214 , G06F18/21 , G06F18/2433 , G06F18/2431 , G06F18/2415
Abstract: 本发明提供了一种用于细粒度多分类的网络入侵开放识别方法、系统及存储介质,网络入侵开放识别方法包括:特征表示步骤:学习一个泛化性的特征表示网络来表征训练和测试样本,从而为后续的分类步骤和拒绝步骤提供支撑;分类步骤:构建分类器,在封闭世界假设中将测试样本分类为已知类别中的某一个类别;拒绝步骤:从训练数据分布中估计可能的簇数,以在开放特征空间学习准确的识别器,从而最小化已知类别样本被错误识别为未知的风险。本发明的有益效果是:1.该网络入侵开放识别方法提高了网络入侵检测在开放世界中的检测准确性;2.该网络入侵开放识别方法具有很好的特征表示能力,能够在分类已知类别样本的同时拒绝那些未知类别的样本。
-
公开(公告)号:CN118941606A
公开(公告)日:2024-11-12
申请号:CN202411415165.5
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种自动驾驶单目深度估计的道路物理域对抗补丁生成方法,形成场景图像数据集;生成目标车辆的掩码图像,目标车辆转换成像素坐标系下的像素坐标,将目标汽车嵌入场景图像中得到目标对象场景图;将道路补丁转换成像素坐标系下的像素坐标;通过场景构造模块得到多个场景图像,得到多方道路补丁视图集;计算深度损失及特征损失,构造目标损失函数;通过目标函数计算由模型输入相应补丁区域大小加权的平均梯度,使用平均梯度作为道路补丁图像的梯度,使用MI‑FGSM的方法更新当前补丁,当达到最大迭代次数时生成最终道路对抗补丁。本发明的方法使得单目深度估计技术更加精准、可靠,鲁棒性更高。
-
-
-
-
-
-
-
-
-