基于图异常检测算法的网络入侵检测方法、系统及介质

    公开(公告)号:CN118118274B

    公开(公告)日:2024-10-18

    申请号:CN202410445603.6

    申请日:2024-04-15

    Abstract: 本发明提供了一种基于图异常检测算法的网络入侵检测方法、系统及介质,该方法包括:针对不同的协议将网络流量数据包按照五元组聚合为网络流,所述五元组包括源IP地址、源端口号、目的IP地址、目的端口号和传输层协议;使用聚合好的网络流构建同源网络流图和同目的网络流图,并采用相似度计算减小同源网络流图和同目的网络流图的规模;使用图自编码器对同源网络流图和同目的网络流图进行编码解码,最终得到每个网络流的异常分,进而根据每个网络流的异常分判断是否为异常恶意流量。本发明能对网络流之间的关系进行充分建模。

    一种两阶段异常用户行为分析的检测方法及系统

    公开(公告)号:CN117909912B

    公开(公告)日:2024-07-02

    申请号:CN202410312729.6

    申请日:2024-03-19

    Abstract: 本发明涉及计算机与人工智能技术领域,特别涉及一种两阶段异常用户行为分析的检测方法及系统。其方法包括步骤:S1.数据特征处理:在获取用户行为信息及用户身份信息后将数据进行特征处理;S2.建立基准模型:分析用户行为的时间分布情况,选取部分特征数据建立基准模型,利用基准模型进行粗粒度的用户行为检测,找出存在异常用户;S3.细粒度检测:对基准模型找出的存在异常用户进行细粒度的第二阶段检测。本发明在第一阶段的基准模型实现行为级异常的检测,并能按时间顺序依次检测每周用户的行为情况,在第二阶段进行细粒度的用户级异常的检测,找出异常行为与用户的对应关系,更准确、更高比例地找出异常行为和用户并减少误报。

    一种两阶段异常用户行为分析的检测方法及系统

    公开(公告)号:CN117909912A

    公开(公告)日:2024-04-19

    申请号:CN202410312729.6

    申请日:2024-03-19

    Abstract: 本发明涉及计算机与人工智能技术领域,特别涉及一种两阶段异常用户行为分析的检测方法及系统。其方法包括步骤:S1.数据特征处理:在获取用户行为信息及用户身份信息后将数据进行特征处理;S2.建立基准模型:分析用户行为的时间分布情况,选取部分特征数据建立基准模型,利用基准模型进行粗粒度的用户行为检测,找出存在异常用户;S3.细粒度检测:对基准模型找出的存在异常用户进行细粒度的第二阶段检测。本发明在第一阶段的基准模型实现行为级异常的检测,并能按时间顺序依次检测每周用户的行为情况,在第二阶段进行细粒度的用户级异常的检测,找出异常行为与用户的对应关系,更准确、更高比例地找出异常行为和用户并减少误报。

    基于图异常检测算法的网络入侵检测方法、系统及介质

    公开(公告)号:CN118118274A

    公开(公告)日:2024-05-31

    申请号:CN202410445603.6

    申请日:2024-04-15

    Abstract: 本发明提供了一种基于图异常检测算法的网络入侵检测方法、系统及介质,该方法包括:针对不同的协议将网络流量数据包按照五元组聚合为网络流,所述五元组包括源IP地址、源端口号、目的IP地址、目的端口号和传输层协议;使用聚合好的网络流构建同源网络流图和同目的网络流图,并采用相似度计算减小同源网络流图和同目的网络流图的规模;使用图自编码器对同源网络流图和同目的网络流图进行编码解码,最终得到每个网络流的异常分,进而根据每个网络流的异常分判断是否为异常恶意流量。本发明能对网络流之间的关系进行充分建模。

Patent Agency Ranking