-
公开(公告)号:CN119172160A
公开(公告)日:2024-12-20
申请号:CN202411426471.9
申请日:2024-10-14
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于音频特征的加密流量攻击检测方法、系统及介质,该方法包括:通过五元组划分网络会话流,根据流量字节和音频信号的二进制关系,将网络会话流从流量pcap格式转为音频wav格式;将wav格式文件输入至音频特征提取算法中,计算分帧参数,提取MFCC音频特征;利用MFCC音频特征训练神经网络模型,实现加密流量攻击分类。本发明能避免对网络流量中的关键攻击特征提取不充分或者关键攻击信息缺失的问题,能降低专家知识依赖,支持后续特征提取和攻击检测。
-
公开(公告)号:CN119341845B
公开(公告)日:2025-03-18
申请号:CN202411885356.8
申请日:2024-12-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L43/0876 , H04L43/04 , G06F18/211 , G06F18/23213 , G06F18/2433
Abstract: 本发明公开了一种网络流量检测方法、系统、电子设备及存储介质,方法包括对捕获到的网络流量提取流级别特征并对其进行独热编码,得到多维特征向量,利用kmeans算法对多维特征向量分别进行良性流量和恶意流量聚类,并生成子类标签;使用多质心对比自编码器对多维特征向量降维,得到嵌入特征向量;使用多层感知器对所述嵌入特征向量进行二分类,获取所述嵌入特征向量的良性类置信度和恶意类置信度,并确定置信度高对应的类为预测类;基于所述嵌入特征向量的子类质心和置信度筛选待检测样本,并利用筛选出的所述待检测样本优化所述多质心对比自编码器和所述多层感知器。本发明方法对正常流量和恶意流量具有持续高效的判别能力。
-
公开(公告)号:CN119341845A
公开(公告)日:2025-01-21
申请号:CN202411885356.8
申请日:2024-12-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L43/0876 , H04L43/04 , G06F18/211 , G06F18/23213 , G06F18/2433
Abstract: 本发明公开了一种网络流量检测方法、系统、电子设备及存储介质,方法包括对捕获到的网络流量提取流级别特征并对其进行独热编码,得到多维特征向量,利用kmeans算法对多维特征向量分别进行良性流量和恶意流量聚类,并生成子类标签;使用多质心对比自编码器对多维特征向量降维,得到嵌入特征向量;使用多层感知器对所述嵌入特征向量进行二分类,获取所述嵌入特征向量的良性类置信度和恶意类置信度,并确定置信度高对应的类为预测类;基于所述嵌入特征向量的子类质心和置信度筛选待检测样本,并利用筛选出的所述待检测样本优化所述多质心对比自编码器和所述多层感知器。本发明方法对正常流量和恶意流量具有持续高效的判别能力。
-
-