-
公开(公告)号:CN119229152B
公开(公告)日:2025-03-18
申请号:CN202411756558.2
申请日:2024-12-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/75 , G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895
Abstract: 本发明公开了一种基于密集感知图对比学习的子图匹配方法、系统、电子设备及存储介质,方法包括针对图数据集中的初始化子图,利用随机子图增强方法或密集子图增强方法获取正样本子图和非子图负样本;建立图表示学习嵌入模型,图表示学习嵌入模型基于图神经网络框架,利用图同构网络作为编码器,将图结构嵌入到高维度向量;将正样本子图和非子图负样本输入图表示学习嵌入模型并利用分类器验证结果。本发明方法将图对比学习融入子图匹配,以自监督学习方式避免了对大量标注数据的依赖;本发明提出的密集子图增强策略可以在保留数据内在属性的基础上,更好地对数据进行处理,提高模型对数据特征的学习能力,从而提升子图匹配的准确性和效率。
-
公开(公告)号:CN119341845B
公开(公告)日:2025-03-18
申请号:CN202411885356.8
申请日:2024-12-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L43/0876 , H04L43/04 , G06F18/211 , G06F18/23213 , G06F18/2433
Abstract: 本发明公开了一种网络流量检测方法、系统、电子设备及存储介质,方法包括对捕获到的网络流量提取流级别特征并对其进行独热编码,得到多维特征向量,利用kmeans算法对多维特征向量分别进行良性流量和恶意流量聚类,并生成子类标签;使用多质心对比自编码器对多维特征向量降维,得到嵌入特征向量;使用多层感知器对所述嵌入特征向量进行二分类,获取所述嵌入特征向量的良性类置信度和恶意类置信度,并确定置信度高对应的类为预测类;基于所述嵌入特征向量的子类质心和置信度筛选待检测样本,并利用筛选出的所述待检测样本优化所述多质心对比自编码器和所述多层感知器。本发明方法对正常流量和恶意流量具有持续高效的判别能力。
-
公开(公告)号:CN119341845A
公开(公告)日:2025-01-21
申请号:CN202411885356.8
申请日:2024-12-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L43/0876 , H04L43/04 , G06F18/211 , G06F18/23213 , G06F18/2433
Abstract: 本发明公开了一种网络流量检测方法、系统、电子设备及存储介质,方法包括对捕获到的网络流量提取流级别特征并对其进行独热编码,得到多维特征向量,利用kmeans算法对多维特征向量分别进行良性流量和恶意流量聚类,并生成子类标签;使用多质心对比自编码器对多维特征向量降维,得到嵌入特征向量;使用多层感知器对所述嵌入特征向量进行二分类,获取所述嵌入特征向量的良性类置信度和恶意类置信度,并确定置信度高对应的类为预测类;基于所述嵌入特征向量的子类质心和置信度筛选待检测样本,并利用筛选出的所述待检测样本优化所述多质心对比自编码器和所述多层感知器。本发明方法对正常流量和恶意流量具有持续高效的判别能力。
-
公开(公告)号:CN119229152A
公开(公告)日:2024-12-31
申请号:CN202411756558.2
申请日:2024-12-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/75 , G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895
Abstract: 本发明公开了一种基于密集感知图对比学习的子图匹配方法、系统、电子设备及存储介质,方法包括针对图数据集中的初始化子图,利用随机子图增强方法或密集子图增强方法获取正样本子图和非子图负样本;建立图表示学习嵌入模型,图表示学习嵌入模型基于图神经网络框架,利用图同构网络作为编码器,将图结构嵌入到高维度向量;将正样本子图和非子图负样本输入图表示学习嵌入模型并利用分类器验证结果。本发明方法将图对比学习融入子图匹配,以自监督学习方式避免了对大量标注数据的依赖;本发明提出的密集子图增强策略可以在保留数据内在属性的基础上,更好地对数据进行处理,提高模型对数据特征的学习能力,从而提升子图匹配的准确性和效率。
-
-
-