虫害图像识别方法、虫害监控方法、装置、设备及介质

    公开(公告)号:CN110516712B

    公开(公告)日:2023-04-07

    申请号:CN201910707649.X

    申请日:2019-08-01

    Abstract: 本发明公开了一种虫害图像识别方法、装置、计算机设备及存储介质,在获取待识别虫害图像之后,将所述待识别虫害图像输入到预设的种类识别模型中进行识别,得到所述待识别虫害图像的种类信息;根据所述种类信息对所述待识别虫害图像进行图像划分,得到分类图像和每一所述分类图像的种类信息;将每一所述分类图像输入到所述种类信息对应的虫龄识别模型中,得到虫龄信息。通过多个不同的模型对待识别虫害图像进行多层次的识别和图像分割,得到虫害相关的信息,保证了更加精准和有效地识别,为后续地虫情预测和防治提供了有效的支持。另外地,本发明还公开了一种虫害监控方法、装置、计算机设备及存储介质。

    一种基于特征波长的高光谱柑橘叶片病害识别方法

    公开(公告)号:CN110763698B

    公开(公告)日:2022-01-14

    申请号:CN201910965757.7

    申请日:2019-10-12

    Abstract: 本发明公开了一种基于特征波长的高光谱柑橘叶片病害识别方法,该方法利用高光谱技术基于波段运算挑选出特征波长而实现柑橘叶片多种病害判别检测,通过建立病害种类判别模型,只需获取待检测样本的高光谱图像进行预处理,提取其相应的特征波长下的反射率数据模型中,即可得到病害类型的检测结果,能实现对柑橘叶片病害种类无损、快速、准确的鉴定。且利用波段运算结果与标记值的相关系数选择特征波长,计算简单,挑选特征波长的判别效果好。将待检测样品高光谱数据预处理后,每个像素的光谱值带入模型,即可通过颜色可视化显示病害种类与分布,更加直观。

    一种基于特征波长的高光谱柑橘叶片病害识别方法

    公开(公告)号:CN110763698A

    公开(公告)日:2020-02-07

    申请号:CN201910965757.7

    申请日:2019-10-12

    Abstract: 本发明公开了一种基于特征波长的高光谱柑橘叶片病害识别方法,该方法利用高光谱技术基于波段运算挑选出特征波长而实现柑橘叶片多种病害判别检测,通过建立病害种类判别模型,只需获取待检测样本的高光谱图像进行预处理,提取其相应的特征波长下的反射率数据模型中,即可得到病害类型的检测结果,能实现对柑橘叶片病害种类无损、快速、准确的鉴定。且利用波段运算结果与标记值的相关系数选择特征波长,计算简单,挑选特征波长的判别效果好。将待检测样品高光谱数据预处理后,每个像素的光谱值带入模型,即可通过颜色可视化显示病害种类与分布,更加直观。

Patent Agency Ranking