-
公开(公告)号:CN113158339B
公开(公告)日:2022-10-18
申请号:CN202110408433.0
申请日:2021-04-16
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种针对SST湍流模型的湍流长度尺度修正方法,本修正方法以无量纲速度散度λl的值为基本自变量来确定修正源项的大小,通过控制函数tanh(h2(η‑h3))‑1实现了对修正源项作用区域的控制。本发明方法不依赖于壁面距离这一参数,而是根据流场中速度散度的强度大小来确定修正源项的大小,可以有效避免现有代数方法的不足。
-
公开(公告)号:CN108928490A
公开(公告)日:2018-12-04
申请号:CN201810768351.5
申请日:2018-07-13
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种水平起降两级入轨飞行器的气动布局,包括一级飞行器:具有乘波属性的翼身融合体双垂尾的下反翼设计,其机身部件为扁平设计,机身部件的背部为削平设计,削平部分用于放置二级飞行器,二级飞行器:采用小展弦比后掠翼的翼身组合体加单垂尾的气动布局,其机身部件的机身截面为半圆加倒圆方形,机身部件的腹部为平面,与一级飞行器的背部削平部分连接;本发明的布局能有效的提高一级飞行器和二级飞行器的各种控制功能,满足燃料的携带要求,具有良好的防热性能。
-
公开(公告)号:CN108008022A
公开(公告)日:2018-05-08
申请号:CN201711264305.3
申请日:2017-12-05
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种随温度变化的超声波传播速度测量方法,根据介质温度-超声传播特性,采用超声回波法,基于热传导反问题的求解可快速测量随温度变化的超声波传播速度,适用于固体介质中随温度变化条件的超声纵波、横波和表面波等波速的测量;本发明具有测量周期短、测量精度高等优点,而且将超声传播速度表示为随位置和时间变化的分段函数模型,可以对任意随速度进行识别且不需要任何先验知识。
-
公开(公告)号:CN104568213B
公开(公告)日:2017-11-28
申请号:CN201510002336.6
申请日:2015-01-05
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于电磁超声的温度场非接触式探测系统,包括微控制器、发射电路、电磁超声探头、接收开关、声学信号采集模块、回波数据处理模块和显示模块;所述微控制器的输出端与发射电路的输入端连接,所述发射电路的输出端与电磁超声探头的输入端连接,所述电磁超声探头的输出端与接收开关的输入端连接,所述接收开关的一个输出端与微控制器的输入端连接,所述接收开关的另一个输出端与声学信号采集模块的输入端连接,所述声学信号采集模块的输出端与回波数据处理模块的输入端连接,所述回波数据处理模块的输出端与显示模块的输入端连接。达到快速准确地获得物体表面温度和内部非均匀温度场的目的。
-
公开(公告)号:CN105466495A
公开(公告)日:2016-04-06
申请号:CN201511015908.0
申请日:2015-12-31
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01D21/02
CPC classification number: G01D21/02
Abstract: 本发明公开了一种同时获取壁内部非均匀温度场及壁厚的测量方法,分别获得超声纵波和横波法所测量得到的相位差,将其作为壁内温度场重建的输入量,并基于热传导反问题的多参数反演方法获得等效的热边界条件和壁厚,再根据热传导的正问题求解获得炉壁或管壁内部不同时刻的温度场分布状态。本发明能够测量壁厚未知条件下高炉炉壁和高温蒸汽管道管壁等结构内部的非均匀温度场。
-
公开(公告)号:CN104568213A
公开(公告)日:2015-04-29
申请号:CN201510002336.6
申请日:2015-01-05
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于电磁超声的温度场非接触式探测系统,包括微控制器、发射电路、电磁超声探头、接收开关、声学信号采集模块、回波数据处理模块和显示模块;所述微控制器的输出端与发射电路的输入端连接,所述发射电路的输出端与电磁超声探头的输入端连接,所述电磁超声探头的输出端与接收开关的输入端连接,所述接收开关的一个输出端与微控制器的输入端连接,所述接收开关的另一个输出端与声学信号采集模块的输入端连接,所述声学信号采集模块的输出端与回波数据处理模块的输入端连接,所述回波数据处理模块的输出端与显示模块的输入端连接。达到快速准确地获得物体表面温度和内部非均匀温度场的目的。
-
公开(公告)号:CN118862518A
公开(公告)日:2024-10-29
申请号:CN202411320379.4
申请日:2024-09-23
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F30/15 , G06F119/08
Abstract: 本申请公开了一种超高温陶瓷抗烧蚀性能评估方法、装置、设备及介质,涉及高速飞行器热防护技术领域,包括:基于与C‑SiC‑ZrB2陶瓷对应的组分配比信息确定在预设高温有氧环境中经过氧化后的C‑SiC‑ZrB2陶瓷的表层氧化膜的孔隙率;基于孔隙率及预设耗尽层判断规则判断氧化后的C‑SiC‑ZrB2陶瓷与氧化物之间是否存在碳化硅耗尽层;根据得到的判断结果以及相应的环境条件进行数学模型构建,以得到烧蚀计算模型;基于烧蚀计算模型确定与C‑SiC‑ZrB2陶瓷对应的烧蚀特征参数,以完成相应的陶瓷抗烧蚀性能评估操作;其中,烧蚀特征参数包括相应的氧化层厚度、陶瓷后退量以及陶瓷增重。有效提高了评估的准确性及效率。
-
公开(公告)号:CN117451217B
公开(公告)日:2024-03-12
申请号:CN202311794920.0
申请日:2023-12-25
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种航天热流传感器及基于双温差补偿的热流修正方法,包括第一热沉、第二热沉与金属板;第一热沉和第二热沉呈嵌入式设置在金属板上,且第一热沉和第二热沉的第一端一侧端面与金属板所在的平面平齐;其中,第一热沉和第二热沉的体积不相同;第一热电偶、第二热电偶和第三热电偶,第一热电偶和第二热电偶分别安装在第一热沉、第二热沉远离金属板的第二端端部,第三热电偶设置在金属板的来流方向所在的一侧;其中,第一热沉的第二端、第二热沉的第二端以及所述金属板与来流方向相反的一侧还覆盖有隔热层。本发明在同一流场位置制造两种不同的温差,采集温差对于壁面热流带来的热流测量偏差数据,能够提升飞行器壁面热流测量精度。
-
公开(公告)号:CN116029219B
公开(公告)日:2023-07-07
申请号:CN202310166088.3
申请日:2023-02-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/27 , G06F30/28 , G06N3/0464 , G06N3/08 , G06Q10/04
Abstract: 本申请公开了一种飞行器气动热预测方法、装置、设备及存储介质,涉及飞行器气动热技术领域,包括:获取飞行器的飞行条件和飞行器的外形特征;基于卷积神经网络构建包含外形特征提取网络、来流信息提取网络以及热流预测网络的气动热预测模型;将飞行条件和所述外形特征输入至训练后的气动热预测模型,利用训练后的气动热预测模型对飞行器的气动热进行预测,以得到相应的预测结果。通过该气动热预测模型直接输出预测的气动热结果,通过该气动热预测模型能够实现对不同外形飞行器的气动热进行快速预测,并且借鉴了图像处理技术的思想,利用卷积神经网络权值共享的特点,相比基于全连接神经网络构建的预测模型提高模型的训练速度。
-
公开(公告)号:CN116151082A
公开(公告)日:2023-05-23
申请号:CN202310433939.6
申请日:2023-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/23 , G06F30/15 , G06F113/08 , G06F119/08 , G06F111/10
Abstract: 本发明公开了基于表面数据传递的伸缩翼气动热与传热耦合模拟方法,涉及流固耦合计算领域,包括:步骤一:选取计算锚点;步骤二:流场求解;步骤三:获得每个计算锚点的流场壁面网格热流值;步骤四:将固定翼热流值和伸缩翼热流值分别对应至固体域和固定翼网格空间;步骤五:将固定翼和伸缩翼热流值分别插值到固定翼和伸缩翼结构壁面网格,对插值后的固定翼和伸缩翼结构壁面网格进行计算获得固定翼与伸缩翼的温度分布;步骤六:返回执行步骤二,累计返回执行预设次数步骤二后结束,获得最终的固定翼与伸缩翼的温度分布结果,本方法具有操作简单,计算量小的优点。
-
-
-
-
-
-
-
-
-