-
公开(公告)号:CN116610905B
公开(公告)日:2023-09-22
申请号:CN202310892878.X
申请日:2023-07-20
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种基于各向异性尺度修正的反距离权重数据插值方法,包括以下步骤:针对固定的飞行器翼面或者舵面构型S,将已知物理量的数据点、待插值的数据点表示为集合;由厚度方向、展向和弦向三个方向构成插值坐标系;统计插值坐标系下已知物理量的数据点集合和待插值的数据点集合在厚度方向、展向和弦向三个方向上的最小值和最大值;在插值坐标系下根据最小值和最大值对已知物理量和待插值数据点进行各向异性修正得到数据点;在插值坐标系下进行插值;计算得到待插值点的物理量,用于飞行器薄的翼面、舵面结构进行多场耦合。本发明可以各向异性修正翼面和舵面各方向的坐标,增大薄层方向的距离权重系数,提高数据插值精度。
-
公开(公告)号:CN116029219B
公开(公告)日:2023-07-07
申请号:CN202310166088.3
申请日:2023-02-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/27 , G06F30/28 , G06N3/0464 , G06N3/08 , G06Q10/04
Abstract: 本申请公开了一种飞行器气动热预测方法、装置、设备及存储介质,涉及飞行器气动热技术领域,包括:获取飞行器的飞行条件和飞行器的外形特征;基于卷积神经网络构建包含外形特征提取网络、来流信息提取网络以及热流预测网络的气动热预测模型;将飞行条件和所述外形特征输入至训练后的气动热预测模型,利用训练后的气动热预测模型对飞行器的气动热进行预测,以得到相应的预测结果。通过该气动热预测模型直接输出预测的气动热结果,通过该气动热预测模型能够实现对不同外形飞行器的气动热进行快速预测,并且借鉴了图像处理技术的思想,利用卷积神经网络权值共享的特点,相比基于全连接神经网络构建的预测模型提高模型的训练速度。
-
公开(公告)号:CN113158340B
公开(公告)日:2022-10-18
申请号:CN202110408435.X
申请日:2021-04-16
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种针对k‑epsion湍流模型的湍流长度尺度修正方法,本修正方法以无量纲速度散度λl的值为基本自变量来确定修正源项的大小,通过控制函数tanh(h2(η‑h3))‑1实现了对修正源项作用区域的控制。本发明方法不依赖于壁面距离这一参数,而是根据流场中速度散度的强度大小来确定修正源项的大小,可以有效避免现有代数方法的不足。
-
公开(公告)号:CN112989485B
公开(公告)日:2022-04-12
申请号:CN202110065551.6
申请日:2021-01-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F119/08
Abstract: 本发明提供的一种基于热壁修正的沿弹道热流插值方法中,利用热壁修正公式,实现前后锚点壁面温度的统一,获得前后锚点统一壁温下的壁面热流,之后利用Fay‑Riddell求得的驻点热流值将前后锚点壁面热流无量纲化,再利用反时间距离权重法插值获得全部结构传热计算时刻点上的统一壁温下的无量纲壁面热流,最后利用对应结构传热计算时刻点上的驻点热流值进行有量纲化和利用热壁修正公式将统一壁面温度修正回各自的非均匀壁温,完成锚点壁面热流向结构传热计算时刻点壁面热流的插值过程。本发明考虑了弹道以及壁面温度变化对于热流插值结果的影响,能够减小热流插值误差,提高热流插值计算精度。
-
公开(公告)号:CN111931295A
公开(公告)日:2020-11-13
申请号:CN202010963871.9
申请日:2020-09-13
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F111/10 , G06F113/28 , G06F30/28
Abstract: 本发明公开了一种全弹道整体迭代的气动热/传热耦合计算方法。该方法迭代过程为重复热环境-传热的单向计算,操作简单易于实现;该方法按照一定规则在全弹道上进行锚点选取,锚点之间的热环境可并行计算,流场计算热环境和结构场计算的温度分布通过特定插值相互耦合求解,沿弹道整体迭代若干轮后计算精度可满足特定需求。相较于沿时间方向依次进行耦合计算的方法而言,全弹道整体迭代的气动热/传热耦合计算方法计算效率提升,提升倍数为锚点数/整体迭代轮数;由于沿全弹道整体迭代为误差减小过程,相较于误差增大过程的沿时间方向依次耦合计算,收敛误差至最小范围,计算精度提升。
-
公开(公告)号:CN107368661B
公开(公告)日:2020-06-05
申请号:CN201710621122.6
申请日:2017-07-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F119/08
Abstract: 本发明公开了一种高超声速飞行器热气动弹性特性的耦合计算方法,从气动力、气动热、结构传热和结构应力/变形等物理场特征时间出发,在考虑现有计算资源和不降低耦合计算精度的前提下,有效减小了耦合分析方法的计算量,可用于高超声速飞行器实际结构的热气动弹性分析。本发明通过监控结构温度场的变化情况实现了耦合时间步长的动态调整,在有效保证耦合计算精度的情况下,大幅度提升耦合计算效率这一难题。该方法可有效实现高超声速飞行器整机结构或部件的热气动弹性特性分析;同时,对同样涉及飞行器流‑热‑固耦合计算问题也具备求解能力,譬如气动热与传热耦合问题、结构热安全性评估问题等。
-
公开(公告)号:CN104792435A
公开(公告)日:2015-07-22
申请号:CN201510190566.X
申请日:2015-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/24
Abstract: 本发明公开了一种基于瞬态热边界反演的结构内部非均匀温度场的重建方法,该方法基于超声脉冲回波的渡越时间,反演导致结构温度变化的瞬态热边界条件,在此基础上,通过求解热传导方程,重建结构内部非稳态的温度分布。相较于现有的超声测温方法而言,超声探测的内部温度并非直接由渡越时间获得,而是通过反演的瞬态热边界条件计算得到,因此本发明获得的温度不再是传播路径上的单一平均值,而是具体的温度分布,其温度分辨率更高、稳定性更好,可实现固体结构内部不同时刻温度分布的实时高精度重建。
-
公开(公告)号:CN119312736B
公开(公告)日:2025-03-21
申请号:CN202411864215.8
申请日:2024-12-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/17 , G06F119/08 , G06F119/02 , G06F113/08 , G06F111/10 , G06F119/14 , G06F119/12
Abstract: 本发明公开了一种内外流耦合数值模拟方法、装置、设备及存储介质,涉及数值计算技术领域,确定初始时刻的流动状态获得外场壁面温度,按照外场流体边界条件求解外场多组分化学非平衡N‑S方程,获得下一时刻外部流体边界热流及下一时刻外场压力,作为内场求解的耦合界面边界条件,通过TPMM及LTNE的焓方法方程组求解多孔发汗结构内流获得下一时刻耦合边界处的参数,最终获得终止时刻高焓非平衡外场参数。通过采用多组分化学非平衡假设下的N‑S方程求解超声速外流,模拟超声速条件下主动冷却工质与超声速来流之间的化学反应,获得多孔发汗冷却系统壁面热流及结构热响应。
-
公开(公告)号:CN117408054B
公开(公告)日:2024-04-12
申请号:CN202311358640.5
申请日:2023-10-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F17/11 , G06F119/08 , G06F113/08
Abstract: 本发明公开了一种基于结霜相似律的圆管结霜平均厚度预测方法,涉及结霜行为预测领域,所述方法包括:步骤1:对强对流条件下低温圆管干模态结霜行为进行模拟,获得强对流条件下不同低温圆管干模态结霜相似关系;步骤2:获得第一结霜状态下第一低温圆管上的第一霜层生长信息;步骤3:基于不同低温圆管干模态结霜相似关系、第一霜层生长信息和第一结霜状态,预测获得第二结霜状态下第二低温圆管上的结霜平均厚度。本发明能够减少低温圆管上霜层厚度预测的计算量,提高预测效率。
-
公开(公告)号:CN117494400A
公开(公告)日:2024-02-02
申请号:CN202311358565.2
申请日:2023-10-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F17/11 , G06F119/08 , G06F113/08
Abstract: 本发明公开了强对流条件下低温平板干模态结霜相似因素获得方法,涉及结霜行为预测领域,包括:对低温平板干模态结霜进行模拟,构建霜层对应的能量守恒方程和质量守恒方程;基于无量纲温度、无量纲霜层厚度、无量纲结霜时间、无量纲湿度和无量纲霜层密度对质量守恒方程进行处理得到无量纲质量守恒方程;基于无量纲温度、无量纲霜层厚度、无量纲湿度和无量纲霜层热导率对能量守恒方程进行处理得无量纲能量守恒方程;对无量纲质量守恒方程和无量纲能量守恒方程进行分析获得强对流条件下低温平板干模态结霜相似因素结果,本方法能够获得强对流条件下低温平板干模态结霜相似因素。
-
-
-
-
-
-
-
-
-