-
公开(公告)号:CN113720343A
公开(公告)日:2021-11-30
申请号:CN202110935483.4
申请日:2021-08-16
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01C21/34
Abstract: 本发明涉及一种基于动态数据实时适应的航向预测方法,包括以下步骤:对车辆行进过程中采集得到的声音信号进行处理,得到多个定向角数据;将得到的多个定向角数据通过坐标旋转的方式放在一个连续的区间内;将多个定向角数据作为训练集,训练线性回归模型,确定出定向角的变化趋势;根据所述定向角的变化趋势,判断野外运动车辆相对于传感器布设的运动方向,再结合传感器布设时声音传感器的朝向角预测出所述野外运动车辆行进的航向。本发明能够对传感器实时产生的数据进行航向判别,且模型简单,鲁棒性强,且对于数据集没有硬性要求,在少数数据集下也可得到运动目标的粗略航向,并且随着数据集的增加,得到更加精准的航向。
-
公开(公告)号:CN107315995A
公开(公告)日:2017-11-03
申请号:CN201710354814.9
申请日:2017-05-18
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法,包括:S1,获取待识别人脸图像并预处理;S2,判断数据库中人脸图像数量是否达到预定值,若未达到则执行S3,否则执行S4;S3,利用拉普拉斯对数脸算法从待识别人脸图像中提取人脸特征,而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的卡方距离,并输出卡方距离最小的人脸图像;S4,利用预先训练的卷积神经网络从预处理后的待识别人脸图像中提取人脸特征;而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的余弦距离,并输出余弦距离最小的人脸图像。本发明可以实现快速的人脸识别,识别准确率高,对于监控、反恐等都有重要的意义。
-
公开(公告)号:CN112257750B
公开(公告)日:2024-01-09
申请号:CN202010997010.2
申请日:2020-09-21
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G06F18/25 , G06F18/2431
Abstract: 本发明涉及一种面向复合式探测节点的分布式融合系统,包括节点级融合处理中心和系统级融合处理中心,所述节点级融合处理中心用于接收复合式探测节点探测到目标信息,并对异类传感信息进行协同与融合,产生局部目标探测信息,并生成节点级目标报告;所述系统级融合处理中心根据各节点级目标报告中的探测数据完成数据关联、批次分离、类型融合、数量融合和目标运动状态融合,生成完整的系统级目标探测信息。本发明在稳定可靠地实现目标识别的同时,尽量降低网络的资源消耗,使其功能更强大,适用范围更广泛。
-
公开(公告)号:CN113823321A
公开(公告)日:2021-12-21
申请号:CN202111010607.4
申请日:2021-08-31
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于特征预训练的深度学习分类的声音数据分类方法,包括:获取P通道的声音数据,按帧长L将所述P通道的声音数据截取为若干段声音样本,每段所述声音样本包括帧长为L的P通道声音样本数据和截取数据的分类类别;对所述帧长为L的P通道声音样本数据进行K倍降采样,得到L/K个点的P通道声音样本;按帧长L提取所述P通道的声音数据的MFCC特征;构建卷积神经网络,通过所述若干段声音样本和P通道的声音数据的MFCC特征来对所述卷积神经网络进行两次训练,得到训练好的卷积神经网络;通过训练好的卷积神经网络来识别输入声音信号的类别。本发明的卷积神经网络能够对输入的声音信号类别进行有效分类。
-
公开(公告)号:CN112257750A
公开(公告)日:2021-01-22
申请号:CN202010997010.2
申请日:2020-09-21
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G06K9/62
Abstract: 本发明涉及一种面向复合式探测节点的分布式融合系统,包括节点级融合处理中心和系统级融合处理中心,所述节点级融合处理中心用于接收复合式探测节点探测到目标信息,并对异类传感信息进行协同与融合,产生局部目标探测信息,并生成节点级目标报告;所述系统级融合处理中心根据各节点级目标报告中的探测数据完成数据关联、批次分离、类型融合、数量融合和目标运动状态融合,生成完整的系统级目标探测信息。本发明在稳定可靠地实现目标识别的同时,尽量降低网络的资源消耗,使其功能更强大,适用范围更广泛。
-
公开(公告)号:CN107315995B
公开(公告)日:2020-07-31
申请号:CN201710354814.9
申请日:2017-05-18
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法,包括:S1,获取待识别人脸图像并预处理;S2,判断数据库中人脸图像数量是否达到预定值,若未达到则执行S3,否则执行S4;S3,利用拉普拉斯对数脸算法从待识别人脸图像中提取人脸特征,而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的卡方距离,并输出卡方距离最小的人脸图像;S4,利用预先训练的卷积神经网络从预处理后的待识别人脸图像中提取人脸特征;而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的余弦距离,并输出余弦距离最小的人脸图像。本发明可以实现快速的人脸识别,识别准确率高,对于监控、反恐等都有重要的意义。
-
公开(公告)号:CN108737191A
公开(公告)日:2018-11-02
申请号:CN201810552318.9
申请日:2018-05-31
Applicant: 中国科学院上海微系统与信息技术研究所 , 中国科学院大学
IPC: H04L12/24 , H04W40/04 , H04W40/32 , H04W84/18 , H04B17/391
CPC classification number: H04L41/0893 , H04B17/3911 , H04L41/145 , H04W40/04 , H04W40/32 , H04W84/18
Abstract: 本发明涉及一种面向超密集无线传感器网基于无监督学习的拓扑控制方法,以遗传算法的框架为基础,对网络节点进行分簇,通过不断地无监督学习寻找最优的分簇网络拓扑。在优化过程中,网络的节点能量、节点距离和节点密度三个因素是重要的输入数据集,利用层次化分析方法决定不同因素权重建立适应度函数。本发明能够有效地改善节点能量消耗,并最终提高无线传感器网的网络寿命。
-
公开(公告)号:CN104181615A
公开(公告)日:2014-12-03
申请号:CN201410394810.X
申请日:2014-08-12
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02A90/14
Abstract: 本发明涉及一种微气象环境及物理信息实时监测通用平台,包括主控制器、传感器电路、电源转换模块和对外接口;所述主控制器通过I2C接口和外围的传感器进行通信,通过所述电源转换模块与外部电源相连,通过所述对外接口和上位机实现数据交互;所述上位机设定工作方式包括:单个传感器数据查询、单次全传感器数据查询、定时上报数据或者超警戒值上报数据。本发明可以快速响应、实时测量、组帧上报气象环境及平台本身的物理信息等多种环境信息。
-
-
-
-
-
-
-