一种基于泰勒展开的人脸识别方法及系统

    公开(公告)号:CN106169072A

    公开(公告)日:2016-11-30

    申请号:CN201610531722.9

    申请日:2016-07-07

    CPC classification number: G06K9/00221 G06K9/00268

    Abstract: 本发明涉及一种基于泰勒展开的人脸识别方法及系统,方法包括以下步骤:采集图像数据,利用人脸检测算法检测是否出现人脸图像,并进行人脸图像的分割提取以及预处理;对预处理后的图像进行三种不同形式采样,每个样本得到三个不同采样层,分别提取每一采样层的LTFP特征;融合三层LTFP特征得到HLTFP特征;分别计算待识别人员的HLTFP特征与所有已注册的人员的HLTFP特征之间的卡方距离,根据卡方距离的大小确定待识别人员的身份。系统包括图像获取模块、人脸检测模块、提取模块、预处理模块、采样模块、特征提取模块、融合模块、计算模块和识别模块。本发明能够降低特征维度和提高识别率。

    一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法

    公开(公告)号:CN107315995B

    公开(公告)日:2020-07-31

    申请号:CN201710354814.9

    申请日:2017-05-18

    Abstract: 本发明提供一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法,包括:S1,获取待识别人脸图像并预处理;S2,判断数据库中人脸图像数量是否达到预定值,若未达到则执行S3,否则执行S4;S3,利用拉普拉斯对数脸算法从待识别人脸图像中提取人脸特征,而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的卡方距离,并输出卡方距离最小的人脸图像;S4,利用预先训练的卷积神经网络从预处理后的待识别人脸图像中提取人脸特征;而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的余弦距离,并输出余弦距离最小的人脸图像。本发明可以实现快速的人脸识别,识别准确率高,对于监控、反恐等都有重要的意义。

    一种基于麦克风阵列的风噪声检测方法

    公开(公告)号:CN105118515A

    公开(公告)日:2015-12-02

    申请号:CN201510387604.0

    申请日:2015-07-03

    Abstract: 本发明涉及一种基于麦克风阵列的风噪声检测方法,包括以下步骤:先对麦克风阵列采集的声音信号进行预处理,包括分帧,去均值等,再利用延时估计算法计算各个通道间的时延值,判断计算的时延值是否超过设定的阈值,如果超过则为风噪声,否则为其他声信号。本发明设计的风噪声检测方法,从风噪声信号和声音目标信号在空气中传播速度的本质性差异入手,利用麦克风阵列间各通道间的时延参数进行风噪声检测。该发明具有简单、计算量小,能在检测精度和功耗两方面获得较好的折中,对风噪声等级具有鲁棒性和环境适应能力强等特点。

    一种基于泰勒展开的人脸识别方法及系统

    公开(公告)号:CN106169072B

    公开(公告)日:2019-03-19

    申请号:CN201610531722.9

    申请日:2016-07-07

    Abstract: 本发明涉及一种基于泰勒展开的人脸识别方法及系统,方法包括以下步骤:采集图像数据,利用人脸检测算法检测是否出现人脸图像,并进行人脸图像的分割提取以及预处理;对预处理后的图像进行三种不同形式采样,每个样本得到三个不同采样层,分别提取每一采样层的LTFP特征;融合三层LTFP特征得到HLTFP特征;分别计算待识别人员的HLTFP特征与所有已注册的人员的HLTFP特征之间的卡方距离,根据卡方距离的大小确定待识别人员的身份。系统包括图像获取模块、人脸检测模块、提取模块、预处理模块、采样模块、特征提取模块、融合模块、计算模块和识别模块。本发明能够降低特征维度和提高识别率。

    一种基于麦克风阵列的风噪声检测方法

    公开(公告)号:CN105118515B

    公开(公告)日:2018-11-27

    申请号:CN201510387604.0

    申请日:2015-07-03

    Abstract: 本发明涉及一种基于麦克风阵列的风噪声检测方法,包括以下步骤:先对麦克风阵列采集的声音信号进行预处理,包括分帧,去均值等,再利用延时估计算法计算各个通道间的时延值,判断计算的时延值是否超过设定的阈值,如果超过则为风噪声,否则为其他声信号。本发明设计的风噪声检测方法,从风噪声信号和声音目标信号在空气中传播速度的本质性差异入手,利用麦克风阵列间各通道间的时延参数进行风噪声检测。该发明具有简单、计算量小,能在检测精度和功耗两方面获得较好的折中,对风噪声等级具有鲁棒性和环境适应能力强等特点。

    一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法

    公开(公告)号:CN107315995A

    公开(公告)日:2017-11-03

    申请号:CN201710354814.9

    申请日:2017-05-18

    Abstract: 本发明提供一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法,包括:S1,获取待识别人脸图像并预处理;S2,判断数据库中人脸图像数量是否达到预定值,若未达到则执行S3,否则执行S4;S3,利用拉普拉斯对数脸算法从待识别人脸图像中提取人脸特征,而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的卡方距离,并输出卡方距离最小的人脸图像;S4,利用预先训练的卷积神经网络从预处理后的待识别人脸图像中提取人脸特征;而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的余弦距离,并输出余弦距离最小的人脸图像。本发明可以实现快速的人脸识别,识别准确率高,对于监控、反恐等都有重要的意义。

Patent Agency Ranking