一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法

    公开(公告)号:CN107315995A

    公开(公告)日:2017-11-03

    申请号:CN201710354814.9

    申请日:2017-05-18

    Abstract: 本发明提供一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法,包括:S1,获取待识别人脸图像并预处理;S2,判断数据库中人脸图像数量是否达到预定值,若未达到则执行S3,否则执行S4;S3,利用拉普拉斯对数脸算法从待识别人脸图像中提取人脸特征,而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的卡方距离,并输出卡方距离最小的人脸图像;S4,利用预先训练的卷积神经网络从预处理后的待识别人脸图像中提取人脸特征;而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的余弦距离,并输出余弦距离最小的人脸图像。本发明可以实现快速的人脸识别,识别准确率高,对于监控、反恐等都有重要的意义。

    一种基于麦克风阵列的运动目标计数方法

    公开(公告)号:CN105068042B

    公开(公告)日:2017-10-13

    申请号:CN201510456283.5

    申请日:2015-07-29

    Abstract: 本发明涉及一种基于麦克风阵列的运动目标计数方法,其特征在于所述的计数方法包括以下步骤:麦克风阵列通过目标检测算法获悉是否出现运动目标;检测到运动目标出现后,麦克风阵列在每个时间帧上利用该帧的采集信号按一个声源对运动目标进行定向,从而得到运动目标在每个时间帧上的角度估计值;检测算法检测到运动目标驶离麦克风阵列过后,麦克风阵列停止角度估计,计算所得各帧的角度估计值经过某个角度带的次数,则该次数就是运动目标的数目。本发明充分利用了麦克风阵列的优势,凭借单个麦克风阵列即可十分便捷地实现对运动目标数目的估计。且所述的计数方法具有传统的使用红外传感器或图像传感器难以满足的低功耗、易于布放以及隐蔽性的三个优点。

    提取。一种野外运动目标精细化提取方法

    公开(公告)号:CN104182976B

    公开(公告)日:2017-02-01

    申请号:CN201410395284.9

    申请日:2014-08-12

    Abstract: 本发明涉及野外运动目标精细化提取方法,包括:获取包含运动目标的序列图像,并对序列图像进行预处理;将预处理后的序列图逐帧做差后分割为多个栅格,根据栅格的特征值确定目标所在的运动区域,并利用栅格法提取目标的运动区域进一步缩小目标范围;在目标的运动区域内对背景进行建模,通过背景减除法得到目标的二值化图,并对所述二值化图进行带反馈的像素级处理;将处理后的二值化图映射到目标所在的彩色图区域,并对所述彩色图区域进行超像素分割;将该分割结果和二值化图进行融合,根据融合结果,计算每个超像素的置信度,阈值化后最终得到精细化的运动目标。本发明可以在复杂背景下实现较实时、鲁棒、精细的野外运动目标的

    一种基于麦克风阵列的运动目标计数方法

    公开(公告)号:CN105068042A

    公开(公告)日:2015-11-18

    申请号:CN201510456283.5

    申请日:2015-07-29

    CPC classification number: G01S3/80 G06M1/00

    Abstract: 本发明涉及一种基于麦克风阵列的运动目标计数方法,其特征在于所述的计数方法包括以下步骤:麦克风阵列通过目标检测算法获悉是否出现运动目标;检测到运动目标出现后,麦克风阵列在每个时间帧上利用该帧的采集信号按一个声源对运动目标进行定向,从而得到运动目标在每个时间帧上的角度估计值;检测算法检测到运动目标驶离麦克风阵列过后,麦克风阵列停止角度估计,计算所得各帧的角度估计值经过某个角度带的次数,则该次数就是运动目标的数目。本发明充分利用了麦克风阵列的优势,凭借单个麦克风阵列即可十分便捷地实现对运动目标数目的估计。且所述的计数方法具有传统的使用红外传感器或图像传感器难以满足的低功耗、易于布放以及隐蔽性的三个优点。

    基于自监督神经网络的视觉-惯导-雷达融合自定位方法

    公开(公告)号:CN116824433A

    公开(公告)日:2023-09-29

    申请号:CN202310495293.4

    申请日:2023-05-05

    Abstract: 本发明涉及一种基于自监督神经网络的视觉‑惯导‑雷达融合自定位方法,包括:获取视频帧序列、惯导数据和激光雷达点云图;将视频帧序列、惯导数据和激光雷达点云图输入至位姿估计网络模型,得到输入视频帧的相对位姿估计;其中,位姿估计网络模型包括:深度预测网络,用于根据输入的视频帧序列得到深度图;特征提取网络,用于分别对输入的视频帧序列、惯导数据和激光雷达点云图提取特征信息,得到视觉特征、动量特征和雷达特征;特征融合网络,用于将视觉特征和雷达特征进行融合得到预融合特征,再将预融合特征与动量特征进行融合,得到融合特征;位姿估计网络,用于根据融合特征预测位姿变换矩阵。本发明提升了自监督深度定位算法的定位精度。

    一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法

    公开(公告)号:CN107315995B

    公开(公告)日:2020-07-31

    申请号:CN201710354814.9

    申请日:2017-05-18

    Abstract: 本发明提供一种基于拉普拉斯对数脸及卷积神经网络的人脸识别方法,包括:S1,获取待识别人脸图像并预处理;S2,判断数据库中人脸图像数量是否达到预定值,若未达到则执行S3,否则执行S4;S3,利用拉普拉斯对数脸算法从待识别人脸图像中提取人脸特征,而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的卡方距离,并输出卡方距离最小的人脸图像;S4,利用预先训练的卷积神经网络从预处理后的待识别人脸图像中提取人脸特征;而后计算提取的人脸特征与数据库中各人脸图像对应的人脸特征之间的余弦距离,并输出余弦距离最小的人脸图像。本发明可以实现快速的人脸识别,识别准确率高,对于监控、反恐等都有重要的意义。

Patent Agency Ranking