-
公开(公告)号:CN114684390B
公开(公告)日:2024-07-09
申请号:CN202210345647.2
申请日:2022-03-31
Applicant: 北京控制工程研究所
IPC: B64G1/40
Abstract: 本申请涉及共底贮箱的领域,具体公开了一种适用于共底贮箱上贮箱流体获取装置,获取装置包括位于上贮箱内部的导流装置、位于上贮箱外部的蓄液器;蓄液器包含蓄液器壳体、集液器、排液管、除气组件,蓄液器壳体连接于上贮箱外壁且内部与上贮箱内部连通;集液器包含集液壳、集液接头、集液柱和多个集液叶片,集液壳与集液接头外部两个接头相连,集液壳开设有多个第一集液孔,集液接头另一个外部接头与排液管连通,排液管另一端伸出蓄液器壳体外部,集液接头内接头与集液柱连通,集液柱开设多个第二集液孔,集液叶片位于集液柱内部;除气组件为位于蓄液器壳体内多个开孔的板体。流体获取装置保证了共底贮箱的上贮箱内流体能够稳定不夹气供给发动机。
-
公开(公告)号:CN115355145B
公开(公告)日:2024-05-14
申请号:CN202210877796.3
申请日:2022-07-25
Applicant: 北京控制工程研究所
Inventor: 刘旭辉 , 李永 , 耿金越 , 汪旭东 , 郑伟杰 , 路松才 , 姚兆普 , 龙军 , 付新菊 , 高晨光 , 王平 , 宋新河 , 范旭丰 , 刘子健 , 张恒 , 吕泰增 , 赵立伟 , 韩智恒
IPC: F03H1/00
Abstract: 一种基于气体场电离增强的微牛级变推力器,属于空间推进技术领域。本发明包括:微牛级冷气推力器微喷管与场电离增强装置一体化、双工作模式的结构,喷管扩张段出口处经接口集成碳纳米管场电离推力器。中和器布置在场电离推力器外围。推力可工作在两种模式下,当场电离推力器不加电时,以冷气推力器状态工作;当场电离推力器加电时,气体经过接口进入到场电离推力器中,碳纳米管尖端的曲率半径只有纳米,具有很强的局部电场,将通入的气体进行电离,形成离子流。通过抽取级将正离子引出,经过加速栅极对离子进行加速,产生推力。场电离推力器外围的中和器利用隧穿效应,极易进行电子发射,对引出的正离子进行中和。
-
公开(公告)号:CN117382922A
公开(公告)日:2024-01-12
申请号:CN202311492837.8
申请日:2023-11-10
Applicant: 北京控制工程研究所
Inventor: 刘锦涛 , 李永 , 龙军 , 陈磊 , 曲震 , 汪旭东 , 官长斌 , 李文 , 刘清源 , 高宁 , 姚灿 , 林星荣 , 朱洪来 , 方杰 , 杨南基 , 张阿莉 , 刘鑫 , 毕强 , 张占海 , 孙静 , 谢继香 , 刘翔宇
Abstract: 本发明涉及一种卫星用流量精确调控泵压推进系统,包括推进剂贮箱、液加排阀、过滤器、超声波流量计、泵控制器主份、泵控制器备份、智能调速泵主份、智能调速泵主份、自锁阀主份、自锁阀备份、推力器、气加排阀。本发明的流量精确调控泵压推进系统基于流量反馈实现转速调控,使空间微泵的流量输出稳定在5‰以内,提高系统推力稳定性,可以精确控制推力值,提供相对恒定的推力。同时高分辨率的流量调控精度可以实现推进剂消耗量和剩余量的累计,精确计算获得贮箱内部推进剂的剩余量,剩余量估算精度可以达到1%。另外本发明能够增加推进剂的携带量,可有效延长卫星的使用寿命,提高卫星的机动能力。
-
公开(公告)号:CN113819022B
公开(公告)日:2023-04-14
申请号:CN202111014935.1
申请日:2021-08-31
Applicant: 北京控制工程研究所
IPC: F03H1/00
Abstract: 一种磁等离子体动力推力器的分级启动装置,包括阴极、第一阳极、第二阳极、阴阳极绝缘陶瓷;推力器点火时,阴极和第一阳极首先启动引出束流,然后对第二阳极加载空载电压,使得第二阳极启动;阴阳极绝缘陶瓷用于第一阳极与第二阳极的绝缘;第一阳极与阴极之间的最小距离不超过预设第一间距且使得启动击穿电压不超过预设第一电压;第一阳极与第二阳极之间的最小距离不超过预设第二间距且第二阳极环与阴极的空载电压不超过预设第二电压。
-
公开(公告)号:CN112049692B
公开(公告)日:2022-12-13
申请号:CN202010808254.1
申请日:2020-08-12
Applicant: 北京控制工程研究所
IPC: F01D15/08 , F01D15/10 , F01D25/16 , F01D25/18 , F01D25/12 , F04D29/063 , F04D29/58 , F04D29/056 , F01K13/02 , F01K25/00 , F03G6/00
Abstract: 一种10kW级空间核能闭式布雷顿循环热电转换系统,应用场景为空间飞行器动力,将同位素热源产生的热能转化为电能,为电推力器等负载提供电力。本发明的发电功率为10kW,工质回路按闭式布雷顿循环设计,工质依次经过压气机中的绝热压缩、以同位源为热源定压加热、在透平中绝热膨胀、定压冷却的热力过程。该系统充分考虑所用惰性气体工质的物性,综合利用工质气体中各组分气体在导热性、热容等方面的优势,经过反复迭代设计,使得该系统具备了布局紧凑、转换效率高,功率密度高,环境适应性强等特点,同时适用于水潜航器动力系统。
-
公开(公告)号:CN114992075A
公开(公告)日:2022-09-02
申请号:CN202210692071.7
申请日:2022-06-17
Applicant: 北京控制工程研究所
IPC: F03H1/00
Abstract: 本发明公开了一种磁等离子体推力器射频加速装置,包括推力器腔体,丝杠支架,恒定磁场线圈组和射频天线组;射频天线组设于推力器腔体外部,包括四个沿推力器腔体周向排布的射频天线,第一、三射频天线,第二、四射频天线分别施加相位相同的射频电,第一、二射频天线中施加的射频电相位差为90°;恒定磁场线圈组包括若干个沿推力器腔体轴向排布的恒定磁场线圈,每个恒定磁场线圈中接入直流电;丝杠支架用于根据所需磁场位型实现恒定磁场线圈组沿推力器腔体轴向的位置调节。本发明还提供一种基于上述装置的磁等离子体推力器射频加速方法。本发明利用射频能量耦合机理加速等离子体中的离子,实现能量的高效注入,避免了加速过程中的电极腐蚀。
-
公开(公告)号:CN114922744A
公开(公告)日:2022-08-19
申请号:CN202210343951.3
申请日:2022-03-31
Applicant: 北京控制工程研究所
IPC: F02K9/60
Abstract: 本申请涉及航天器用贮箱的领域,具体公开了一种航天器用承力式低温共底贮箱,包括从上到下依次连接的前贮箱、共底和后贮箱,前贮箱包括依次焊接的前封头、柱段、后封头;后贮箱包括后贮箱封头;后封头开设有与自身同轴的安装孔,共底连接于后封头的安装孔位置,共底呈中部上凸的球冠形,后贮箱封头连接于后封头的安装孔位置且位于共底的下方。使共底贮箱可有效承担内部压力载荷和传递外部系统载荷,可大大减轻系统重量,提高结构效率。
-
公开(公告)号:CN114684390A
公开(公告)日:2022-07-01
申请号:CN202210345647.2
申请日:2022-03-31
Applicant: 北京控制工程研究所
IPC: B64G1/40
Abstract: 本申请涉及共底贮箱的领域,具体公开了一种适用于共底贮箱上贮箱流体获取装置,获取装置包括位于上贮箱内部的导流装置、位于上贮箱外部的蓄液器;蓄液器包含蓄液器壳体、集液器、排液管、除气组件,蓄液器壳体连接于上贮箱外壁且内部与上贮箱内部连通;集液器包含集液壳、集液接头、集液柱和多个集液叶片,集液壳与集液接头外部两个接头相连,集液壳开设有多个第一集液孔,集液接头另一个外部接头与排液管连通,排液管另一端伸出蓄液器壳体外部,集液接头内接头与集液柱连通,集液柱开设多个第二集液孔,集液叶片位于集液柱内部;除气组件为位于蓄液器壳体内多个开孔的板体。流体获取装置保证了共底贮箱的上贮箱内流体能够稳定不夹气供给发动机。
-
公开(公告)号:CN114237310A
公开(公告)日:2022-03-25
申请号:CN202111435915.1
申请日:2021-11-29
Applicant: 北京控制工程研究所
IPC: G05D7/06
Abstract: 一种基于位移流量双闭环的多模式流量调节系统及方法,包括基于位移传感器的位移内环控制回路,以及基于流量传感器的流量外环控制回路;内外控制环路均可通过模式选择器控制工作在开环和闭环状态,形成四种工作模式。本发明在流量反馈环路的基础上引入位移反馈环路,对压电阀的开启位移进行控制,进而提高压电比例阀在实际流量调节的收敛速度;同时利用多种工作模式,解决比例压电流量调节系统的可靠性和容错能力,解决单个传感器故障时流量调节系统工作可靠性问题。
-
公开(公告)号:CN111637029B
公开(公告)日:2021-09-07
申请号:CN202010397941.9
申请日:2020-05-12
Applicant: 北京控制工程研究所
IPC: F03H1/00
Abstract: 本发明涉及分段式复合结构磁等离子体动力推力器阴极及其制备方法。所述阴极包括导热段、过渡段、发射段、进气缓冲腔体、多孔导流通道,导流通道均匀分布并贯穿导热段、过渡段和发射段,与进气缓冲腔体相通,等离子体通过进气缓冲腔体进入阴极并使气体均匀的进入多孔导流通道进行工质输送,阴极由铜或铜合金制成的导热段、连接导热段和发射段的过渡段与钨基复合氧化物复合材料制成的发射段组成,实现了促进发射段的导热,增加温度梯度,从而增加钨基阴极的散热,降低阴极表面温度,减轻阴极的烧蚀。
-
-
-
-
-
-
-
-
-