用于目标检测的SAR数据扩增方法

    公开(公告)号:CN114998749A

    公开(公告)日:2022-09-02

    申请号:CN202210900855.4

    申请日:2022-07-28

    Abstract: 本发明涉及一种用于目标检测的SAR数据扩增方法,包括:获取原始SAR图像数据集及其标注信息;对所述原始SAR图像数据集进行目标检测,结合所述标注信息,构建负样本集;利用所述标注信息获得所述原始SAR图像数据集中的目标样本,构建方位角目标样本集;构建基于自注意力机制的生成对抗网络,利用所述负样本集和所述方位角目标样本集对所述生成对抗网络进行迭代训练;评估所述生成对抗网络生成的样本质量,获得高质量的生成样本;在所述原始SAR图像数据集中插入所述高质量的生成样本,以及对应的标注信息。本发明实现SAR数据的自动扩增,提升SAR图像目标识别任务训练集中目标样本的多样性和均衡性。

    一种基于VGG-Attention模型的SAR图像部件解译方法

    公开(公告)号:CN112036419A

    公开(公告)日:2020-12-04

    申请号:CN202010978115.3

    申请日:2020-09-17

    Abstract: 本发明公开了一种基于VGG-Attention模型的SAR图像部件解译方法,首先对原始VGG网络进行改进,并在改进后的VGG网络中添加注意力模块,得到VGG-Attention模型,在训练过程中输入给定标签的SAR图像,VGG-Attention模型提取SAR图像的整体数据特征,残差注意力模块将所提取的深层特征中的重要特征进行加强和集中,通过优化网络参数实现对SAR图像显著部件的解译。本发明在不降低解译效果的前提下减少了训练所需时间,提升了网络的鲁棒性,能有效对SOC和大俯仰角EOC条件下的SAR目标图像中的显著部件进行较准确的解译。

Patent Agency Ranking