-
公开(公告)号:CN115272857B
公开(公告)日:2023-04-07
申请号:CN202210900863.9
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06V10/764 , G06V10/77 , G06V10/80 , G06V10/82
Abstract: 本发明涉及一种基于注意力机制的多源遥感图像目标识别方法,包括:获取多源遥感图像及其对应的目标类别标签,并进行预处理;提取预处理后的多源遥感图像中的目标特征,对所述目标特征进行过滤,得到多源目标的关键特征;构建特征融合编码器并对所述关键特征进行融合,获得隐层特征数据;构建特征解码器并重构所述隐层特征数据;利用重构的隐层特征数据和所述关键特征对所述特征融合编码器和所述特征解码器进行优化;利用分类网络对所述隐层特征数据进行分类识别。本发明不仅实现多源遥感图像中的目标识别,还可提高识别的精度。
-
公开(公告)号:CN114998749B
公开(公告)日:2023-04-07
申请号:CN202210900855.4
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明涉及一种用于目标检测的SAR数据扩增方法,包括:获取原始SAR图像数据集及其标注信息;对所述原始SAR图像数据集进行目标检测,结合所述标注信息,构建负样本集;利用所述标注信息获得所述原始SAR图像数据集中的目标样本,构建方位角目标样本集;构建基于自注意力机制的生成对抗网络,利用所述负样本集和所述方位角目标样本集对所述生成对抗网络进行迭代训练;评估所述生成对抗网络生成的样本质量,获得高质量的生成样本;在所述原始SAR图像数据集中插入所述高质量的生成样本,以及对应的标注信息。本发明实现SAR数据的自动扩增,提升SAR图像目标识别任务训练集中目标样本的多样性和均衡性。
-
公开(公告)号:CN114998748B
公开(公告)日:2023-02-03
申请号:CN202210900842.7
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/74 , G06V10/764 , G06V10/766 , G06V10/82
Abstract: 本发明涉及一种遥感图像目标精细识别方法、电子设备及存储介质,以遥感图像提取的目标特征向量作为输入,充分利用其中编码的多实例信息,将同一幅图片上各实例的相似度信息进行对比学习,结合粗粒度的任意目标检测网络进行端到端的训练,而无需额外设计,通过已知的目标类别标签应用于分类损失以训练相似度计算网络;同时应用于对比损失,增大相同细粒度类别实例之间的相似度,而削减不同细粒度类别实例之间的相似度,增强了模型对实例之间的辨别区分能力。
-
-
公开(公告)号:CN115272856A
公开(公告)日:2022-11-01
申请号:CN202210900854.X
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种舰船目标细粒度识别方法及设备,结合细粒度分类结果和旋转框参数,实现对舰船目标的细粒度识别,避免了成像条件、拍摄角度和舰船目标中心点或角点位置随机导致模型难以聚焦关键点处的细粒度特征的问题,提高了模型定位关键点的准确度,通过构建关键点注意力,引导模型聚焦关键点区域的细粒度特征及其内在自相关性,提高了舰船目标的细粒度识别准确率,为舰船目标细粒度识别提供了一种切实可行的技术途径,在遥感目标识别领域有较大的实际应用价值。
-
公开(公告)号:CN115100532B
公开(公告)日:2023-04-07
申请号:CN202210921934.3
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/0985 , G06N5/02 , G06N5/04 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种小样本遥感图像目标检测方法和系统,所述小样本遥感图像目标检测方法包括:利用基础训练网络训练基类数据,其中,所述基础训练网络包括针对遥感图像建立的知识图谱;利用微调训练网络训练小样本数据,所述小样本数据包括经所述基础训练网络训练后的基类数据和新类数据。本发明的基础训练网络上训练完成的基类数据与新类数据一起构成微调训练网络的样本数据集,使得基础训练阶段训练好的网络可以通过微调训练很好地泛化到当前遥感图像小样本目标检测任务中,且知识图谱的知识输入可以为网络提供先验知识,可以在样本数量少、样本获取难度大的情况下,高效地训练出具备良好性能的目标检测网络。
-
公开(公告)号:CN114998749A
公开(公告)日:2022-09-02
申请号:CN202210900855.4
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明涉及一种用于目标检测的SAR数据扩增方法,包括:获取原始SAR图像数据集及其标注信息;对所述原始SAR图像数据集进行目标检测,结合所述标注信息,构建负样本集;利用所述标注信息获得所述原始SAR图像数据集中的目标样本,构建方位角目标样本集;构建基于自注意力机制的生成对抗网络,利用所述负样本集和所述方位角目标样本集对所述生成对抗网络进行迭代训练;评估所述生成对抗网络生成的样本质量,获得高质量的生成样本;在所述原始SAR图像数据集中插入所述高质量的生成样本,以及对应的标注信息。本发明实现SAR数据的自动扩增,提升SAR图像目标识别任务训练集中目标样本的多样性和均衡性。
-
公开(公告)号:CN114998748A
公开(公告)日:2022-09-02
申请号:CN202210900842.7
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/74 , G06V10/764 , G06V10/766 , G06V10/82
Abstract: 本发明涉及一种遥感图像目标精细识别方法、电子设备及存储介质,以遥感图像提取的目标特征向量作为输入,充分利用其中编码的多实例信息,将同一幅图片上各实例的相似度信息进行对比学习,结合粗粒度的任意目标检测网络进行端到端的训练,而无需额外设计,通过已知的目标类别标签应用于分类损失以训练相似度计算网络;同时应用于对比损失,增大相同细粒度类别实例之间的相似度,而削减不同细粒度类别实例之间的相似度,增强了模型对实例之间的辨别区分能力。
-
公开(公告)号:CN115272856B
公开(公告)日:2023-04-04
申请号:CN202210900854.X
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/045 , G06N3/0464 , G06N3/08 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种舰船目标细粒度识别方法及设备,结合细粒度分类结果和旋转框参数,实现对舰船目标的细粒度识别,避免了成像条件、拍摄角度和舰船目标中心点或角点位置随机导致模型难以聚焦关键点处的细粒度特征的问题,提高了模型定位关键点的准确度,通过构建关键点注意力,引导模型聚焦关键点区域的细粒度特征及其内在自相关性,提高了舰船目标的细粒度识别准确率,为舰船目标细粒度识别提供了一种切实可行的技术途径,在遥感目标识别领域有较大的实际应用价值。
-
-
-
-
-
-
-
-
-