-
公开(公告)号:CN116630794A
公开(公告)日:2023-08-22
申请号:CN202310457764.2
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V20/10 , G06V10/77 , G06V10/80 , G06V10/766 , G06V10/764 , G06T7/73 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于排序样本选择的遥感图像目标检测方法、电子设备,获取遥感图像及对应的目标标签,并进行预处理;通过特征提取主干网络以及特征金字塔网络,得到对应的多尺度特征图;构建分类分支网络以及位置及角度回归分支网络,对多尺度特征图进行预测,获得目标预测值;利用目标标签以及预测值,在多尺度特征图上计算得到交并比自适应阈值,筛选样本点以获得满足条件的正负样本;计算分类排序损失、定位排序损失以及回归损失进行网络训练;重复执行上述步骤,训练检测模型;利用检测模型进行检测。本发明,缓解正负样本不均衡导致传统分类能力难以学习的问题,促进目标检测性能提升,对高分辨率遥感图像旋转框目标检测具有重要意义。
-
公开(公告)号:CN113269691B
公开(公告)日:2022-10-21
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06T5/00 , G06N3/04 , G06N3/08 , G06V10/774
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
公开(公告)号:CN116486160B
公开(公告)日:2023-12-19
申请号:CN202310457860.7
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06V20/10 , G06N3/048 , G06N3/0455 , G06N3/0895
Abstract: 本发明涉及一种基于光谱重建的高光谱遥感图像分类方法、设备及存储介质,基于光谱重建的高光谱遥感图像分类方法包括:步骤S1、对高光谱遥感图像进行数据降维;步骤S2、构建输入样本;步骤S3、建立基于光谱重建任务的自监督预训练网络,通过无标注样本训练特征提取主干网络;步骤S4、基于预训练阶段的特征提取主干网络构建高光谱遥感图像的分类网络,通过标注样本训练分类网络,完成逐像素的分。本发明,能够在小样本情况下显著提升高光谱遥感图像分类准确率并具有较快的模型训练速度,对实际应用具有重要意义。
-
公开(公告)号:CN116486160A
公开(公告)日:2023-07-25
申请号:CN202310457860.7
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06V20/10 , G06N3/048 , G06N3/0455 , G06N3/0895
Abstract: 本发明涉及一种基于光谱重建的高光谱遥感图像分类方法、设备及存储介质,基于光谱重建的高光谱遥感图像分类方法包括:步骤S1、对高光谱遥感图像进行数据降维;步骤S2、构建输入样本;步骤S3、建立基于光谱重建任务的自监督预训练网络,通过无标注样本训练特征提取主干网络;步骤S4、基于预训练阶段的特征提取主干网络构建高光谱遥感图像的分类网络,通过标注样本训练分类网络,完成逐像素的分。本发明,能够在小样本情况下显著提升高光谱遥感图像分类准确率并具有较快的模型训练速度,对实际应用具有重要意义。
-
公开(公告)号:CN116630794B
公开(公告)日:2024-02-06
申请号:CN202310457764.2
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06V20/10 , G06V10/77 , G06V10/80 , G06V10/766 , G06V10/764 , G06T7/73 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于排序样本选择的遥感图像目标检测方法、电子设备,获取遥感图像及对应的目标标签,并进行预处理;通过特征提取主干网络以及特征金字塔网络,得到对应的多尺度特征图;构建分类分支网络以及位置及角度回归分支网络,对多尺度特征图进行预测,获得目标预测值;利用目标标签以及预测值,在多尺度特征图上计算得到交并比自适应阈值,筛选样本点以获得满足条件的正负样本;计算分类排序损失、定位排序损失以及回归损失进行网络训练;重复执行上述步骤,训练检测模型;利用检测模型进行检测。本发明,缓解正负样本不均衡导致传统分类能力难以学习的问题,促进目标检测性能提升,对高分辨率遥感图像旋转框目标检测具有重要意义。
-
公开(公告)号:CN113269691A
公开(公告)日:2021-08-17
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
公开(公告)号:CN118735779A
公开(公告)日:2024-10-01
申请号:CN202410739941.0
申请日:2024-06-07
Applicant: 北京卫星信息工程研究所
IPC: G06T3/4053 , G06T5/77 , G06V10/44 , G06V10/74 , G06F17/18 , G06F17/16 , G06N3/0464 , G06N3/0455 , G06N3/048
Abstract: 本发明涉及一种基于光流运动的红外弱小目标超分辨率重建方法,包括:基于序列图像,得到红外弱小目标的初始特征,并进行增强,得到第一参考帧特征和第一邻域帧特征;将第一参考帧特征、第一邻域帧特征与参考帧和邻域帧两两组合形成4组第二特征,并进行运动补偿,得到2组第三特征;将第三特征分别和参考帧进行组合,最终形成2组第四特征,将2组第四特征输入到特征增强模块;将从特征增强模块输出的特征输入到基于softmax的特征匹配模块;将从特征匹配模块输出的特征和特征增强模块输出的一个特征输入到自关注模块;利用超分辨率重建模块,恢复红外弱小目标的细节信息。本发明,能够恢复大运动的小目标的精细结构,提高了峰值信噪比和结构相似度。
-
公开(公告)号:CN118691877A
公开(公告)日:2024-09-24
申请号:CN202410700827.7
申请日:2024-05-31
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V10/26 , G06V10/82 , G06V10/77 , G06N3/0464
Abstract: 本发明涉及一种高分遥感图像目标状态判别方法、设备及存储介质,包括:利用全景分割网络对高分遥感图像进行全景分割,得到高分遥感图像全景分割图像;根据高分遥感图像全景分割图像中地物目标之间的空间关系生成场景知识图谱;设计基于全景分割图像的遥感地物目标位置编码方法,将地物目标的位置编码加入到对应场景知识图谱中,得到包含位置信息的场景知识图谱;基于预先设定的先验规则知识,对关注目标进行状态的预先判别;构建基于混合卷积的目标动向判别网络,利用目标动向判别网络对经过预判别的场景知识图谱进行计算,得到关注目标的状态判别结果。本发明,能够实现遥感关注地物目标的状态判别。
-
公开(公告)号:CN116524358B
公开(公告)日:2024-05-03
申请号:CN202310460249.X
申请日:2023-04-25
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/82 , G06V10/77 , G06N3/0464 , G06N3/0475 , G06N3/048 , G06N3/094
Abstract: 本发明涉及一种用于目标识别的SAR数据集扩增方法,包括:获取包含目标的SAR数据集并进行预处理;通过核心特征提取模块和散射特征提取模块分别提取目标的核心特征信息和散射特征信息;将所述核心特征信息输入第一级生成对抗网络,得到低分辨率图像;将所述低分辨率图像和所述散射特征信息输入第二级生成对抗网络,得到高分辨率图像,对SAR数据集进行扩增。通过实施本发明的上述方案,两级生成对抗网络、核心特征提取模块和散射特征提取模块的结合使用,可以使两级生成对抗网络分级学习图像中目标的粗略核心特征和精细散射特征,降低单级网络的学习难度,同时可以扩增获得质量高、细节更为真实的SAR目标图像切片。
-
公开(公告)号:CN116485652B
公开(公告)日:2024-03-01
申请号:CN202310465820.7
申请日:2023-04-26
Applicant: 北京卫星信息工程研究所
IPC: G06T3/4053 , G06T3/4023 , G06T7/13 , G06V10/44 , G06V10/774 , G06V10/764 , G06V10/82 , G06V10/80 , G06V10/54 , G06N3/0464 , G06N3/048 , G06N3/082
Abstract: 本发明涉及一种遥感影像车辆目标检测的超分辨率重建方法,包括:构建不同场景下丰富的高分辨率遥感影像数据集,对所述高分辨率遥感影像数据集进行预处理;根据所述高分辨率遥感影像数据集得到对应的低分辨率遥感影像数据集,构建目标超分重建数据集;提取所述低分辨率遥感影像数据集中低分辨率遥感影像的边缘特征;构建超分辨率重建模型,利用所述目标超分重建数据集和所述边缘特征训练优化所述超分辨率重建模型;利用所述超分辨率重建模型对目标进行高分辨率恢复和重建。通过实施本发明的上述方案,有效解决车辆目标因呈现出弱小特性而导致其检测率较低的问题,有效改善目标
-
-
-
-
-
-
-
-
-