基于可编程数据平面的智能网内负载均衡方法与装置

    公开(公告)号:CN116155819A

    公开(公告)日:2023-05-23

    申请号:CN202310424468.2

    申请日:2023-04-20

    Abstract: 本发明提供了一种基于可编程数据平面的智能网内负载均衡方法与装置,涉及通信的技术领域,该方法应用于控制平面,通过获取网络系统中每个交换机的队列深度来实现全局拥塞感知,并利用强化学习算法确定目标交换机的端口转发概率,以辅助决策目标交换机的数据包转发路径。由于强化学习算法的奖励函数值与网络系统中交换机的队列深度差值和平均队列深度成反比,所以能够达到网络中负载均衡效果越差则奖励越少的目的,进而使得智能体输出的动作向减小拥塞、增强负载均衡效果的方向发展。在不对称的网络拓扑环境中仍具备较佳的负载均衡效果,有效地缓解了现有的负载均衡方法负载均衡效果差和普适性差的技术问题。

    星地融合网络中的计算任务卸载方法、装置和电子设备

    公开(公告)号:CN114884958A

    公开(公告)日:2022-08-09

    申请号:CN202210811936.7

    申请日:2022-07-12

    Abstract: 本发明提供了一种星地融合网络中的计算任务卸载方法、装置和电子设备,涉及通信的技术领域,包括:获取星地融合网络中目标边缘网络内所有地面装置的任务状态参数;利用目标神经网络模型对所有地面装置的任务状态参数进行处理,得到每个地面装置的配置参数;其中,目标神经网络模型是基于目标边缘网络的计算任务传输开销计算模型训练的,且计算任务传输开销计算模型的目标为计算任务的传输开销最小;基于所有地面装置的配置参数确定目标边缘网络的计算任务卸载策略;基于计算任务卸载策略,对目标边缘网络中的所有待执行计算任务进行卸载。该方法能够有效的对抗时变信道增益和随机任务到达,在满足用户服务质量的前提下最小化计算任务的传输开销。

    时间敏感流的调度方法、装置和电子设备

    公开(公告)号:CN114785738A

    公开(公告)日:2022-07-22

    申请号:CN202210677447.7

    申请日:2022-06-16

    Abstract: 本发明提供了一种时间敏感流的调度方法、装置和电子设备,涉及通信的技术领域,包括:获取待调度的时间敏感流集合和目标网络的网络拓扑信息;基于时间敏感流集合和网络拓扑信息,确定目标时间敏感流集合和目标时间敏感流集合对应的目标时隙队列映射关系;基于目标时隙队列映射关系对目标时间敏感流集合中的目标时间敏感流进行调度。本发明方法在从待调度的时间敏感流集合中确定目标时间敏感流时,将时间敏感流的路由代价和交换机端口队列的可用资源情况共同作为可调度条件进行综合考量,从而使得目标网络在调度时间敏感流时能够最大化的利用其网络资源,进而有效地缓解了现有的时间敏感流的调度方法存在的网络负载不均衡的技术问题。

    一种多策略池的星地网络快速调度与资源分配方法和装置

    公开(公告)号:CN117580106B

    公开(公告)日:2024-04-05

    申请号:CN202410057576.5

    申请日:2024-01-16

    Abstract: 本发明提供了一种多策略池的星地网络快速调度与资源分配方法和装置,涉及通信的技术领域,包括:获取星地融合网络中目标用户终端的策略池;基于所有用户终端的当前任务调度策略,确定星地融合网络中所有卫星当前的资源分配策略和目标用户终端当前的效用函数值;计算目标用户终端选择策略池中的指定任务调度策略时,更新后的资源分配策略和效用函数值;若更新后的效用函数值大于当前的效用函数值,则调整为指定任务调度策略;否则,维持当前任务调度策略;在确定所有用户终端完成预设轮次的策略间效用函数值比较之后,得到目标任务调度策略和目标资源分配策略。为星地融合网络中用户‑卫星‑云平台架构下的任务调度与资源分配提供了解决方案。

    一种多策略池的星地网络快速调度与资源分配方法和装置

    公开(公告)号:CN117580106A

    公开(公告)日:2024-02-20

    申请号:CN202410057576.5

    申请日:2024-01-16

    Abstract: 本发明提供了一种多策略池的星地网络快速调度与资源分配方法和装置,涉及通信的技术领域,包括:获取星地融合网络中目标用户终端的策略池;基于所有用户终端的当前任务调度策略,确定星地融合网络中所有卫星当前的资源分配策略和目标用户终端当前的效用函数值;计算目标用户终端选择策略池中的指定任务调度策略时,更新后的资源分配策略和效用函数值;若更新后的效用函数值大于当前的效用函数值,则调整为指定任务调度策略;否则,维持当前任务调度策略;在确定所有用户终端完成预设轮次的策略间效用函数值比较之后,得到目标任务调度策略和目标资源分配策略。为星地融合网络中用户‑卫星‑云平台架构下的任务调度与资源分配提供了解决方案。

    基于QMIX的分布式网内拥塞控制方法

    公开(公告)号:CN113315715B

    公开(公告)日:2024-01-05

    申请号:CN202110370309.X

    申请日:2021-04-07

    Abstract: 本发明涉及一种基于QMIX的分布式网内拥塞控制方法,本发明通过直接将相关方法部署在网内的三层交换机中,进行数据包的调度与拥塞控制来克服上述传统技术的缺点,同时进一步提升了拥塞控制效果。本发明受到近年来,多智能体系统控制领域中的分布式强化学习方法的启发,采用多智能体强化学习方法中的集中式训练,分布式执行的算法框架,将QMIX算法直接在交换机内部实现,在快速响应毫秒级流量波动的同时,又做到了各交换机之间的协调控制,从而达到稳定的全局最优系统状态,进行网络拥塞控制。利用日趋成熟的多智能体深度强化学习方法来解决传统网络拥塞问题。(56)对比文件高少华.基于深度强化学习的TCP拥塞控制机制研究.信息科技.2021,(第4期),全文.王亚东;张悦;陈延祥;张宇.命名数据网络中的一种主动拥塞控制机制研究.载人航天.2020,(第01期),全文.肖扬;吴家威;李鉴学;刘军.一种基于深度强化学习的动态路由算法.信息通信技术与政策.2020,(第09期),全文.

    基于可编程数据平面的智能网内负载均衡方法与装置

    公开(公告)号:CN116155819B

    公开(公告)日:2023-07-14

    申请号:CN202310424468.2

    申请日:2023-04-20

    Abstract: 本发明提供了一种基于可编程数据平面的智能网内负载均衡方法与装置,涉及通信的技术领域,该方法应用于控制平面,通过获取网络系统中每个交换机的队列深度来实现全局拥塞感知,并利用强化学习算法确定目标交换机的端口转发概率,以辅助决策目标交换机的数据包转发路径。由于强化学习算法的奖励函数值与网络系统中交换机的队列深度差值和平均队列深度成反比,所以能够达到网络中负载均衡效果越差则奖励越少的目的,进而使得智能体输出的动作向减小拥塞、增强负载均衡效果的方向发展。在不对称的网络拓扑环境中仍具备较佳的负载均衡效果,有效地缓解了现有的负载均衡方法负载均衡效果差和普适性差的技术问题。

Patent Agency Ranking