基于QMIX的分布式网内拥塞控制方法

    公开(公告)号:CN113315715A

    公开(公告)日:2021-08-27

    申请号:CN202110370309.X

    申请日:2021-04-07

    Abstract: 本发明涉及一种基于QMIX的分布式网内拥塞控制方法,本发明通过直接将相关方法部署在网内的三层交换机中,进行数据包的调度与拥塞控制来克服上述传统技术的缺点,同时进一步提升了拥塞控制效果。本发明受到近年来,多智能体系统控制领域中的分布式强化学习方法的启发,采用多智能体强化学习方法中的集中式训练,分布式执行的算法框架,将QMIX算法直接在交换机内部实现,在快速响应毫秒级流量波动的同时,又做到了各交换机之间的协调控制,从而达到稳定的全局最优系统状态,进行网络拥塞控制。利用日趋成熟的多智能体深度强化学习方法来解决传统网络拥塞问题。

    基于QMIX的分布式网内拥塞控制方法

    公开(公告)号:CN113315715B

    公开(公告)日:2024-01-05

    申请号:CN202110370309.X

    申请日:2021-04-07

    Abstract: 本发明涉及一种基于QMIX的分布式网内拥塞控制方法,本发明通过直接将相关方法部署在网内的三层交换机中,进行数据包的调度与拥塞控制来克服上述传统技术的缺点,同时进一步提升了拥塞控制效果。本发明受到近年来,多智能体系统控制领域中的分布式强化学习方法的启发,采用多智能体强化学习方法中的集中式训练,分布式执行的算法框架,将QMIX算法直接在交换机内部实现,在快速响应毫秒级流量波动的同时,又做到了各交换机之间的协调控制,从而达到稳定的全局最优系统状态,进行网络拥塞控制。利用日趋成熟的多智能体深度强化学习方法来解决传统网络拥塞问题。(56)对比文件高少华.基于深度强化学习的TCP拥塞控制机制研究.信息科技.2021,(第4期),全文.王亚东;张悦;陈延祥;张宇.命名数据网络中的一种主动拥塞控制机制研究.载人航天.2020,(第01期),全文.肖扬;吴家威;李鉴学;刘军.一种基于深度强化学习的动态路由算法.信息通信技术与政策.2020,(第09期),全文.

Patent Agency Ranking