一种运动部件空间位姿误差检测方法、系统及介质

    公开(公告)号:CN119794884A

    公开(公告)日:2025-04-11

    申请号:CN202510210786.8

    申请日:2025-02-25

    Abstract: 本发明公开了一种运动部件空间位姿误差检测方法、系统及介质,包括:基于IMU模块和电子水平仪获取机床运动部件的位姿信息:IMU模块获取的加速度计信号和角速度信号、电子水平仪获取的角度误差信号;将位姿信息进行数据融合,获得线值误差和角度误差;基于线值误差、角度误差和机床线形轴的运动速度,采用BP神经网络建立误差预测模型;采用天牛须搜索算法获得BP神经网络的最优初始权值和阈值,并将其代入误差预测模型中进行模型训练,得到训练好的误差预测模型;基于训练好的误差预测模型,进行运动部件空间位姿误差检测,得到位姿误差检测结果。本发明能够实现装备运动空间位姿误差测量,且在保证准确性下提高测量精度。

    一种机器人视觉系统线性轨迹导引精度的测量装置及方法

    公开(公告)号:CN119178579A

    公开(公告)日:2024-12-24

    申请号:CN202411055386.6

    申请日:2024-08-02

    Abstract: 本发明公开了一种机器人视觉系统线性轨迹导引精度的测量装置及方法,涉及机器人导引技术领域,基于激光跟踪仪测量V型标定件两端点位坐标,将机器人工具中心点标定至靶球球心处,调整机器人工具中心点与V型标定件两端点重合,操作机器人示教记录V型标定件两端点位,机器人采用直线轨迹运动指令;激光跟踪仪采用动态测量模式,测量沿V型标定件顶端母线运动的若干点位坐标值,即为视觉系统空间线性轨迹导引精度的理论值;机器人视觉系统导引机器人工具中心点沿V型标定件顶端母线轨迹运动,激光跟踪仪动态测量视觉系统导引后的机器人实际运动轨迹,根据理论轨迹点位和视觉系统导引后的实际轨迹点位,即可精准的测量得到机器人视觉系统空间线性轨迹的导引精度。

    一种机器人视觉系统空间位置导引精度的测量装置及方法

    公开(公告)号:CN116000927A

    公开(公告)日:2023-04-25

    申请号:CN202211704786.6

    申请日:2022-12-29

    Abstract: 本发明公开了一种机器人视觉系统空间位置导引精度的测量装置及方法,包括标定法兰;标定法兰包括第一圆柱和第二圆柱,第一圆柱和第二圆柱端面固接,且同轴设置;第二圆柱的直径为第一圆柱直径的1/2,第二圆柱的厚度和靶球的半径相等。采用本方案,将靶球紧靠在标定法兰的第二圆柱外圆上移动数个位置,激光跟踪仪采集每个位置的点位坐标,可精准拟合得到标定法兰的第二圆柱的端面圆心;将机器人的TCP点标定到靶球球心处;此时机器人视觉系统导引机器人的TCP点运动至标定法兰的第二圆柱端面圆心位置处,跟踪仪测量此时靶球球心坐标,对当前靶球坐标位置与标定法兰第二圆柱的端面圆心坐标求偏差,即可得到机器人视觉系统的空间位置导引精度。

    一种激光跟踪仪误差标定方法及装置

    公开(公告)号:CN119533280A

    公开(公告)日:2025-02-28

    申请号:CN202411690529.0

    申请日:2024-11-25

    Abstract: 本发明公开了一种激光跟踪仪误差标定方法,包括S1,确定激光跟踪仪的关键误差项;S2,将目标靶球设置在安装三坐标测量机测头的位置处;S3,根据激光跟踪仪结构建立系统误差模型;S4,改变所述三坐标测量机位置,获得三坐标测量机在对应位置时的在激光跟踪仪坐标系下的目标靶球的中心点坐标,和获得三坐标测量机在对应位置时的在三坐标测量机自身坐标系下激光跟踪仪测量得到的目标靶球的中心点坐标;S5,设置测量过程中求解的数学模型,通过所述数学模型获得步骤S1中的各关键误差项的对应误差值。本发明的有益效果是,对各关键误差项进行快速解耦,尤其适合对激光跟踪仪装配误差大的项进行快速解耦,实现激光跟踪仪几何误差的快速标定。

    一种机器人空间位姿调节分辨率的测量方法及系统

    公开(公告)号:CN116352757A

    公开(公告)日:2023-06-30

    申请号:CN202310214524.X

    申请日:2023-03-08

    Abstract: 本发明公开了一种机器人空间位姿调节分辨率的测量方法及系统,通过以最小运动指令测量分析机器人的精细运动能力,其中包括位姿累积误差、位姿反向间隙、正反向位姿调节分辨率等技术指标。其中位姿累积误差、位姿反向间隙两项技术指标可为工程师对机器人的运动轨迹规划提供重要参考依据,以规划出机器人更为合理高效的位姿调节路径。而正反向的位姿调节分辨率测量方法,解决了机器人空间位姿调节分辨率的测量问题;其测量分析的结果可为机器人系统集成工程师提供了系统检测反馈单位的选择或选型依据;更重要的是可根据测量分析得出的空间位姿调节分辨率结果,评估机器人集成系统工作性能能否满足任务需求。

Patent Agency Ranking