一种基于数字孪生虚实结合的混合交通流测试方法及系统

    公开(公告)号:CN118212779A

    公开(公告)日:2024-06-18

    申请号:CN202410429603.7

    申请日:2024-04-10

    Applicant: 长安大学

    Abstract: 本发明涉及自动驾驶测试技术领域,具体涉及一种基于数字孪生虚实结合的混合交通流测试方法及系统,包括:采集现实试验场场地数据,实现数字孪生虚拟场景的构建,设置真实环境与虚拟环境的交互,实现虚实结合的系统设置;根据系统设置数据集生成不同风格的虚拟人驾车辆,同时真实驾驶员通过驾驶模拟器采集的数据生成不同风格的真实人驾车辆,部分虚拟人驾车辆和部分真实人驾车辆共同组成具有不同驾驶风格的人类驾驶车辆,获取不同人类驾驶车辆的状态和位置信息;根据人类驾驶车辆的状态和位置信息为智能网联汽车设置全套的感知、定位、规划、控制以及V2X通信方法,实现智能网联汽车在系统中的自动驾驶。本发在测试过程中实时交互,生成连续可制定、贴合实际使用的行驶场景,可进行虚实结合的仿真测试,真实性更高。

    基于多智能体的多车道匝道合流区车辆控制方法及系统

    公开(公告)号:CN119975359A

    公开(公告)日:2025-05-13

    申请号:CN202510326979.X

    申请日:2025-03-19

    Applicant: 长安大学

    Abstract: 本发明基于多智能体的多车道匝道合流区车辆控制方法及系统,该车辆控制方法包括:构建多车道混合交通流匝道合流区的仿真系统;基于多车道混合交通流匝道合流区的仿真系统获取智能体运动状态;基于多智能体深度确定性策略梯度MADDPG算法,调整智能体在混合交通匝道合流区运动状态;基于二次神经元的Actor网络,构建基于二次神经元的多智能体深度策略性梯度BQ‑MADDPG算法;基于二次神经元的多智能体深度策略性梯度BQ‑MADDPG算法中,调整智能体在多车道匝道合流区运动状态,直至智能体完全驶离多车道匝道合流区,用以解决现有多智能体深度强化学习MADRL算法在训练中难以达到稳定状态导致模型收敛困难,无法高效解决混合交通下多车道匝道合流区场景的车辆汇入决策控制问题。

Patent Agency Ranking