短时交通流数据预测方法、系统、计算机设备及存储介质

    公开(公告)号:CN115063975B

    公开(公告)日:2023-07-11

    申请号:CN202210648480.7

    申请日:2022-06-09

    Applicant: 长安大学

    Abstract: 本发明属于交通控制技术领域,公开了一种短时交通流数据预测方法、系统、计算机设备及存储介质,包括:获取待预测区域以及待预测区域各相关区域的历史交通流数据;根据待预测区域的历史交通流数据,得到待预测区域当前时段的周期性交通流数据,以及结合待预测区域各相关区域的历史交通流数据,通过预设的时空特征选择方法,得到待预测区域的最优相关历史交通流数据;获取待预测区域当前时段的外部特征影响因素数据,并将待预测区域当前时段的外部特征影响因素数据、当前时段的周期性交通流数据及最优相关历史交通流数据输入预设的交通流预测模型,得到待预测区域的交通流数据短时预测值,有效提升了短时交通流数据预测的准确性。

    短时交通流数据预测方法、系统、计算机设备及存储介质

    公开(公告)号:CN115063975A

    公开(公告)日:2022-09-16

    申请号:CN202210648480.7

    申请日:2022-06-09

    Applicant: 长安大学

    Abstract: 本发明属于交通控制技术领域,公开了一种短时交通流数据预测方法、系统、计算机设备及存储介质,包括:获取待预测区域以及待预测区域各相关区域的历史交通流数据;根据待预测区域的历史交通流数据,得到待预测区域当前时段的周期性交通流数据,以及结合待预测区域各相关区域的历史交通流数据,通过预设的时空特征选择方法,得到待预测区域的最优相关历史交通流数据;获取待预测区域当前时段的外部特征影响因素数据,并将待预测区域当前时段的外部特征影响因素数据、当前时段的周期性交通流数据及最优相关历史交通流数据输入预设的交通流预测模型,得到待预测区域的交通流数据短时预测值,有效提升了短时交通流数据预测的准确性。

    车辆轨迹预测方法、系统、计算机设备及存储介质

    公开(公告)号:CN114881339A

    公开(公告)日:2022-08-09

    申请号:CN202210545736.1

    申请日:2022-05-19

    Applicant: 长安大学

    Abstract: 本发明属于自动驾驶领域,公开了一种车辆轨迹预测方法、系统、计算机设备及存储介质,包括:提取待预测车辆及待预测车辆各相邻车辆的历史运动轨迹数据,得到待预测车辆的多维动态场景特征向量;提取待预测车辆的多维动态场景特征向量,得到待预测车辆的交通感知信息;编码待预测车辆的交通感知信息以及历史运动状态数据,得到待预测车辆的隐状态信息;根据待预测车辆的隐状态信息,得到待预测车辆的混合注意力矩阵,并通过待预测车辆的混合注意力矩阵为待预测车辆的隐状态信息分配权重,然后依次通过最大池化处理和全连接处理,得到待预测车辆的轨迹预测值,最终有效提升了车辆轨迹预测准确性。

    一种基于时空特征的动态图卷积交通流预测方法

    公开(公告)号:CN117037491B

    公开(公告)日:2025-04-18

    申请号:CN202311023827.X

    申请日:2023-08-15

    Applicant: 长安大学

    Abstract: 本发明涉及一种基于时空特征的动态图卷积交通流预测方法,采用由时空嵌入模块、时空特征融合模块、加权融合层和外部因素模块组成的STF‑SDAM‑DGCN模型,首先对历史交通流数据进行周期划分后与时空嵌入模块学习到的时空嵌入信息融合作为时空特征融合模块的输入数据,同时使用注意力机制、非对称卷积以及Zero‑Softmax函数构建稀疏有向邻接矩阵;将数据输入时空特征融合模块中,同时与外部因素模块中的外部影响因素融合后得到融合外部因素的历史交通流时空特征数据;数据随后传入加权融合层,时空嵌入模块将预测的未来时间步信息也传入该层,依据编码器得到的历史交通流特征生成未来交通流表示,并将其作为解码器输入,通过解码器进行预测,经过全连接层得到最终的未来交通流预测结果。

    一种基于时空特征的动态图卷积交通流预测方法

    公开(公告)号:CN117037491A

    公开(公告)日:2023-11-10

    申请号:CN202311023827.X

    申请日:2023-08-15

    Applicant: 长安大学

    Abstract: 本发明涉及一种基于时空特征的动态图卷积交通流预测方法,采用由时空嵌入模块、时空特征融合模块、加权融合层和外部因素模块组成的STF‑SDAM‑DGCN模型,首先对历史交通流数据进行周期划分后与时空嵌入模块学习到的时空嵌入信息融合作为时空特征融合模块的输入数据,同时使用注意力机制、非对称卷积以及Zero‑Softmax函数构建稀疏有向邻接矩阵;将数据输入时空特征融合模块中,同时与外部因素模块中的外部影响因素融合后得到融合外部因素的历史交通流时空特征数据;数据随后传入加权融合层,时空嵌入模块将预测的未来时间步信息也传入该层,依据编码器得到的历史交通流特征生成未来交通流表示,并将其作为解码器输入,通过解码器进行预测,经过全连接层得到最终的未来交通流预测结果。

Patent Agency Ranking