-
公开(公告)号:CN113139446A
公开(公告)日:2021-07-20
申请号:CN202110391084.6
申请日:2021-04-12
Applicant: 长安大学
Abstract: 本发明公开了一种端到端自动驾驶行为决策方法、系统及终端设备,属于自动驾驶领域。通过嵌入注意力机制的卷积神经网络提取场景空间位置特征,构建空间特征提取网络,准确解析场景目标空间特征及语义信息;通过嵌入时间注意力机制的长短期记忆网络编码‑解码结构捕捉场景时间上下文特征,构建时间特征提取网络,理解记忆场景时间序列信息;本发明综合场景空间信息与时间序列信息,同时结合注意力机制为关键视觉区域和运动序列赋予较高权重,使得预测过程更符合人类驾驶员的驾驶习惯,预测结果更加准确。
-
公开(公告)号:CN111339967A
公开(公告)日:2020-06-26
申请号:CN202010131268.4
申请日:2020-02-28
Applicant: 长安大学
Abstract: 本发明公开了一种基于多视域图卷积网络的行人检测方法,采用卷积神经网络从待处理图像进行特征提取,对提取的特征图像进行多次池化、卷积处理得到预处理特征图像,然后采用多视域池化金字塔提取中得到的预处理特征图像的多尺度特征信息特征图,然后进行人体图卷积得到多个人体图卷积后的特征图,采用Nbox个锚点的预测框分别对人体图卷积后的特征图中的人体目标区域进行预测并识别,完成预测框及预测类别概率值,使用最大池化构建多视域特征金字塔,提高了检测效率,本发明能够有效且高效地处理行人检测中的尺度变化和遮挡问题。
-
公开(公告)号:CN113139446B
公开(公告)日:2024-02-06
申请号:CN202110391084.6
申请日:2021-04-12
Applicant: 长安大学
IPC: G06V20/56 , G06V10/26 , G06V10/40 , G06V10/764 , G06V10/82 , G06N3/0442 , G06N3/0455 , G06N3/0495 , G06N3/082
Abstract: 本发明公开了一种端到端自动驾驶行为决策方法、系统及终端设备,属于自动驾驶领域。通过嵌入注意力机制的卷积神经网络提取场景空间位置特征,构建空间特征提取网络,准确解析场景目标空间特征及语义信息;通过嵌入时间注意力机制的长短期记忆网络编码‑解码结构捕捉场景时间上下文特征,构建时间特征提取网络,理解记忆场景时间序列信息;本发明综合场景空间信息与时间序列信息,同时结合注意力机制为关键视觉区域和运动序列赋予较高权重,使得预测过程更符合人类驾驶员的驾驶习惯,预测结果更加准确。(56)对比文件杜圣东;李天瑞;杨燕;王浩;谢鹏;洪西进.一种基于序列到序列时空注意力学习的交通流预测模型.计算机研究与发展.2020,(第08期),全文.王军;鹿姝;李云伟.融合注意力机制和连接时序分类的多模态手语识别.信号处理.2020,(第09期),全文.胡学敏;童秀迟;郭琳;张若晗;孔力.基于深度视觉注意神经网络的端到端自动驾驶模型.计算机应用.2020,(第07期),全文.
-
公开(公告)号:CN111339967B
公开(公告)日:2023-04-07
申请号:CN202010131268.4
申请日:2020-02-28
Applicant: 长安大学
IPC: G06V40/10 , G06V10/46 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多视域图卷积网络的行人检测方法,采用卷积神经网络从待处理图像进行特征提取,对提取的特征图像进行多次池化、卷积处理得到预处理特征图像,然后采用多视域池化金字塔提取中得到的预处理特征图像的多尺度特征信息特征图,然后进行人体图卷积得到多个人体图卷积后的特征图,采用Nbox个锚点的预测框分别对人体图卷积后的特征图中的人体目标区域进行预测并识别,完成预测框及预测类别概率值,使用最大池化构建多视域特征金字塔,提高了检测效率,本发明能够有效且高效地处理行人检测中的尺度变化和遮挡问题。
-
公开(公告)号:CN115410162A
公开(公告)日:2022-11-29
申请号:CN202210862496.8
申请日:2022-07-21
Applicant: 长安大学
Abstract: 本发明公开了一种复杂城市道路环境下的多目标检测与跟踪方法:步骤1:构建训练集和测试集;步骤2:在现有的DLA34骨干网络基础上逐层增加特征融合模块实现输入图像的深浅层网络特征融合;步骤3:采用Transformer编码模块提取特征图中长距离特征依赖关系;步骤4:通过进一步特征融合及逻辑回归处理;步骤5:利用多目标跟踪模块进行目标关联处理与跟踪,得到带有目标检测框的跟踪特征图;步骤6,得到训练好的多目标检测与跟踪模型;步骤7,将待检测的视频数据输入训练好的多目标检测与跟踪模型,得到带有目标检测框的跟踪特征图。本发明能够在复杂城市道路环境下对多目标进行准确的目标检测和跟踪,可稳定识别外观尺度变化较大的目标。
-
公开(公告)号:CN115376099A
公开(公告)日:2022-11-22
申请号:CN202210862750.4
申请日:2022-07-21
Applicant: 长安大学
IPC: G06V20/58 , G06V10/82 , G06V10/774 , G06V20/17
Abstract: 本发明公开了一种基于目标局部终点与多头注意力机制的轨迹预测方法:步骤1:获取数据集;步骤2:根据目标的历史轨迹及实际局部终点位置信息,预测目标局部终点位置;步骤3:采用社会池化操作提取社交信息,得到特征向量;步骤4:将特征向量输入长短期记忆网络得到目标的预测轨迹;步骤5,进行迭代训练得到训练好的轨迹预测模型;步骤6,将待检测的图像或视频输入训练好的轨迹预测模型,得到目标的预测轨迹。本发明实现了在复杂交通场景下通过特定信息丰富目标轨迹特征进行精确高效的行人轨迹预测。
-
-
-
-
-