-
公开(公告)号:CN113097310B
公开(公告)日:2023-03-24
申请号:CN202110362550.8
申请日:2021-04-02
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种具有电子积累效应的鳍式EAFin‑LDMOS器件,属于半导体技术领域。该器件分为:衬底、埋氧层和器件上面部分;其中器件上面部分包括:栅氧化层;栅氧化层外侧部分:从左至右依次是源极P+区、源极N+区、P‑body、漂移区和漏极N+区;栅氧化层内侧部分:从左至右依次是栅极P+区、栅极P‑body、控制结构的漂移区、控制结构的漏极N+区和控制结构的漏极P+区。本发明在器件中使用了电子积累效应,并采用了鳍式结构,在保持较高的击穿电压下大幅度降低Ron,sp,最终提高了Baliga优值FOM。
-
公开(公告)号:CN111326576B
公开(公告)日:2023-03-14
申请号:CN202010092899.X
申请日:2020-02-14
Applicant: 重庆邮电大学
IPC: H01L29/739 , H01L29/06 , H01L29/08
Abstract: 本发明涉及一种具有纵向分离阳极结构的SALIGBT器件,属于半导体功率器件领域。本发明将传统SA‑LIGBT的N+阳极和P+阳极分离,将N+阳极设置在器件内部,通过增加N+阳极的纵向深度,延长单极性导电模式下电子的流动路径;N+阳极下方P型浮空层可以增大器件的阳极分布电阻,通过调节N+阳极的纵向深度和P型浮空层的掺杂浓度,完全消除snapback效应。本发明利用了器件的纵向长度减少芯片面积;正向导通时,新结构LIGBT的正向导通压降为0.91V,相比于分离阳极短路型LIGBT和常规阳极短路LIGBT分别减少了6.2%和24%;关断时,N+阳极可以快速抽取漂移区中的电子,其关断时间为370ns,相比于传统LIGBT和介质隔离型LIGBT减少了82%和23%。
-
公开(公告)号:CN111834449A
公开(公告)日:2020-10-27
申请号:CN202010731321.4
申请日:2020-07-27
Applicant: 重庆邮电大学
IPC: H01L29/739 , H01L29/40 , H01L29/06 , H01L27/06
Abstract: 本发明涉及一种具有背面双MOS结构的快速关断RC-IGBT器件,属于半导体技术领域。该器件包括栅极接触区1、发射极接触区2、金属场板3、集电极接触区4、发射极5、元胞区P型阱6、过渡区P型阱7、第一场限环8、第二场限环9、第三场限环10、N型集电极11、N型缓冲层12、P型集电极13、N型漂移区14、栅氧化层15、场氧化层16、集电极氧化层17、场截止环接触区18、场截止环19、集电极P-base20。本发明在保证消除正向导通时的负阻效应的前提下,具有相对较快的关断速度和较低的Von、良好的反向导通性能及600V以上的耐压能力,提高了器件的工作稳定性和电流能力。
-
公开(公告)号:CN111834449B
公开(公告)日:2024-04-16
申请号:CN202010731321.4
申请日:2020-07-27
Applicant: 重庆邮电大学
IPC: H01L29/739 , H01L29/40 , H01L29/06 , H01L27/06
Abstract: 本发明涉及一种具有背面双MOS结构的快速关断RC‑IGBT器件,属于半导体技术领域。该器件包括栅极接触区1、发射极接触区2、金属场板3、集电极接触区4、发射极5、元胞区P型阱6、过渡区P型阱7、第一场限环8、第二场限环9、第三场限环10、N型集电极11、N型缓冲层12、P型集电极13、N型漂移区14、栅氧化层15、场氧化层16、集电极氧化层17、场截止环接触区18、场截止环19、集电极P‑base20。本发明在保证消除正向导通时的负阻效应的前提下,具有相对较快的关断速度和较低的Von、良好的反向导通性能及600V以上的耐压能力,提高了器件的工作稳定性和电流能力。
-
公开(公告)号:CN110571264B
公开(公告)日:2023-03-24
申请号:CN201910877635.2
申请日:2019-09-17
Applicant: 重庆邮电大学
IPC: H01L29/08 , H01L29/739
Abstract: 本发明涉及一种具有多通道电流栓的SA‑LIGBT器件,属于功率半导体器件领域。本发明的多通道电流栓的SA‑LIGBT器件主要是在器件的集电极区域设置n个横向P柱,形成多个电子通道,构成电流栓结构,具有以下作用:(1)正向导通时,电流栓相对于对电子电流呈关闭状态,使得晶体管的集电极短路电阻增大,从而完全消除传统SA‑LIGBT的snapback效应;(2)正向导通时降低压降Von;(3)关断时,P柱之间形成的三条电子通道可有效提高电子的抽取效率,减少关断时间。
-
公开(公告)号:CN112466935B
公开(公告)日:2023-03-14
申请号:CN202011481591.0
申请日:2020-12-15
Applicant: 重庆邮电大学
IPC: H01L29/739 , H01L29/08
Abstract: 本发明涉及一种具有集电极多晶硅电子通道的RC‑IGBT器件,属于半导体技术领域。该器件具有以下三个特点:(1)将传统RC‑IGBT的P集电极区分割成高浓度的P+空穴区和低浓度的P型电子阻挡层两段。(2)N+集电极设置在高浓度的P+空穴区内。(3)集电极底部引入N型多晶硅层。正向导通时,通过调整多晶硅层和P型电子阻挡层的掺杂,可以改变集电极短路电阻RCS,从而完全消除snapback效应;关断时,多晶硅层可以快速提取电子,有效降低关断损耗;仿真结果表明:与TRC RC‑IGBT相比,该器件正向导通时完全消除了snapback效应,且在同样正向导通压降为2.8V时,其关断损耗Eoff降低了59%。
-
公开(公告)号:CN110504307B
公开(公告)日:2023-03-14
申请号:CN201910803499.2
申请日:2019-08-28
Applicant: 重庆邮电大学
IPC: H01L29/739 , H01L21/331 , H01L29/06
Abstract: 本发明涉及一种具有栅控集电极的SA‑LIGBT器件,属于电子器件领域。该器件从左至右包括设置的发射极、栅极、N型漂移区、栅控集电极区域。栅控集电极区域从左至右包括N‑buffer Ⅰ缓冲层、P‑collector、N‑buffer Ⅱ缓冲层、P型电子阻挡层P‑base和N‑collector。P型电子阻挡层P‑base和N‑collector下方为横向的槽型栅。正向导通时,P型电子阻挡层P‑base可以阻挡电子流向N‑collector,增加集电极短路电阻。通过调节P型电子阻挡层P‑base的长度和浓度,可以调节集电极短路电阻,消除snapback效应。关断时,P型电子阻挡层会在栅控电压下反型成N型,形成电子通道,提高载流子抽取效率从而有效减少器件的关断时间。
-
公开(公告)号:CN112466935A
公开(公告)日:2021-03-09
申请号:CN202011481591.0
申请日:2020-12-15
Applicant: 重庆邮电大学
IPC: H01L29/739 , H01L29/08
Abstract: 本发明涉及一种具有集电极多晶硅电子通道的RC‑IGBT器件,属于半导体技术领域。该器件具有以下三个特点:(1)将传统RC‑IGBT的P集电极区分割成高浓度的P+空穴区和低浓度的P型电子阻挡层两段。(2)N+集电极设置在高浓度的P+空穴区内。(3)集电极底部引入N型多晶硅层。正向导通时,通过调整多晶硅层和P型电子阻挡层的掺杂,可以改变集电极短路电阻RCS,从而完全消除snapback效应;关断时,多晶硅层可以快速提取电子,有效降低关断损耗;仿真结果表明:与TRC RC‑IGBT相比,该器件正向导通时完全消除了snapback效应,且在同样正向导通压降为2.8V时,其关断损耗Eoff降低了59%。
-
公开(公告)号:CN111326576A
公开(公告)日:2020-06-23
申请号:CN202010092899.X
申请日:2020-02-14
Applicant: 重庆邮电大学
IPC: H01L29/739 , H01L29/06 , H01L29/08
Abstract: 本发明涉及一种具有纵向分离阳极结构的SALIGBT器件,属于半导体功率器件领域。本发明将传统SA-LIGBT的N+阳极和P+阳极分离,将N+阳极设置在器件内部,通过增加N+阳极的纵向深度,延长单极性导电模式下电子的流动路径;N+阳极下方P型浮空层可以增大器件的阳极分布电阻,通过调节N+阳极的纵向深度和P型浮空层的掺杂浓度,完全消除snapback效应。本发明利用了器件的纵向长度减少芯片面积;正向导通时,新结构LIGBT的正向导通压降为0.91V,相比于分离阳极短路型LIGBT和常规阳极短路LIGBT分别减少了6.2%和24%;关断时,N+阳极可以快速抽取漂移区中的电子,其关断时间为370ns,相比于传统LIGBT和介质隔离型LIGBT减少了82%和23%。
-
公开(公告)号:CN110571264A
公开(公告)日:2019-12-13
申请号:CN201910877635.2
申请日:2019-09-17
Applicant: 重庆邮电大学
IPC: H01L29/08 , H01L29/739
Abstract: 本发明涉及一种具有多通道电流栓的SA-LIGBT器件,属于功率半导体器件领域。本发明的多通道电流栓的SA-LIGBT器件主要是在器件的集电极区域设置n个横向P柱,形成多个电子通道,构成电流栓结构,具有以下作用:(1)正向导通时,电流栓相对于对电子电流呈关闭状态,使得晶体管的集电极短路电阻增大,从而完全消除传统SA-LIGBT的snapback效应;(2)正向导通时降低压降Von;(3)关断时,P柱之间形成的三条电子通道可有效提高电子的抽取效率,减少关断时间。
-
-
-
-
-
-
-
-
-