跨语际语言翻译的神经机器翻译模型构建及其翻译方法

    公开(公告)号:CN115017924B

    公开(公告)日:2023-11-07

    申请号:CN202210808791.5

    申请日:2022-07-11

    Abstract: 本发明涉及属于机器翻译领域,提供了跨语际语言翻译的神经机器翻译模型构建及其翻译方法,适用于各类跨语际语言翻译。在训练时,基于训练子集的源语言语料进行编码,构建融合其上下文依赖关系的文本向量,然后计算得其文本表征;然后,针对该子集逐词进行解码,在每一步,首先融合历次译文文本和源文本获得混合表征,然后基于此进行焦点位置计算,获取当前焦点位置的翻译候选词;通过不同子集,在达到一定的步数后,根据候选词和真值的误差进行迭代训练。翻译方法,同样逐词进行翻译,在每一个翻译步,生成当前步基于焦点位置的翻译候选表示,并利用启发式搜索算法,选择其中全局概率值最大的候选文本作为当前步输出的译文文本,直至翻译完成。

    金融交易异常检测方法及其跨区域可持续训练方法

    公开(公告)号:CN115660688B

    公开(公告)日:2024-04-30

    申请号:CN202211301695.8

    申请日:2022-10-24

    Abstract: 本发明涉及金融风险管理领域,公开了一种金融交易异常检测方法及其跨区域可持续训练方法,其金融交易异常检测方法,通过构建由多种节点和多类路径构成的异质结构信息图,克服了现有技术中同质图难以保留多类型语义信息、无法捕捉动态时空特征的问题,充分挖掘时间信息等高阶语义,极大地丰富可获取信息量,并采用深度图神经网络模型,基于注意力机制对节点、路径和网络结构进行融合,获得图嵌入表示,并基于图嵌入表示对异常行为进行检测,提高了异常检测的效率和精度;同时,提出跨区域可持续训练方法,通过知识回放策略和参数平滑策略实现金融交易异常检测模型跨区域的持续学习,方便跨区域部署,适用于金融交易欺诈检测等金融风险管理任务。

    金融交易异常检测方法及其跨区域可持续训练方法

    公开(公告)号:CN115660688A

    公开(公告)日:2023-01-31

    申请号:CN202211301695.8

    申请日:2022-10-24

    Abstract: 本发明涉及金融风险管理领域,公开了一种金融交易异常检测方法及其跨区域可持续训练方法,其金融交易异常检测方法,通过构建由多种节点和多类路径构成的异质结构信息图,克服了现有技术中同质图难以保留多类型语义信息、无法捕捉动态时空特征的问题,充分挖掘时间信息等高阶语义,极大地丰富可获取信息量,并采用深度图神经网络模型,基于注意力机制对节点、路径和网络结构进行融合,获得图嵌入表示,并基于图嵌入表示对异常行为进行检测,提高了异常检测的效率和精度;同时,提出跨区域可持续训练方法,通过知识回放策略和参数平滑策略实现金融交易异常检测模型跨区域的持续学习,方便跨区域部署,适用于金融交易欺诈检测等金融风险管理任务。

    跨语际语言翻译的神经机器翻译模型构建及其翻译方法

    公开(公告)号:CN115017924A

    公开(公告)日:2022-09-06

    申请号:CN202210808791.5

    申请日:2022-07-11

    Abstract: 本发明涉及属于机器翻译领域,提供了跨语际语言翻译的神经机器翻译模型构建及其翻译方法,适用于各类跨语际语言翻译。在训练时,基于训练子集的源语言语料进行编码,构建融合其上下文依赖关系的文本向量,然后计算得其文本表征;然后,针对该子集逐词进行解码,在每一步,首先融合历次译文文本和源文本获得混合表征,然后基于此进行焦点位置计算,获取当前焦点位置的翻译候选词;通过不同子集,在达到一定的步数后,根据候选词和真值的误差进行迭代训练。翻译方法,同样逐词进行翻译,在每一个翻译步,生成当前步基于焦点位置的翻译候选表示,并利用启发式搜索算法,选择其中全局概率值最大的候选文本作为当前步输出的译文文本,直至翻译完成。

    显著区域推断方法和系统
    8.
    发明公开

    公开(公告)号:CN116630754A

    公开(公告)日:2023-08-22

    申请号:CN202310360864.3

    申请日:2023-04-06

    Abstract: 本申请提供显著区域推断方法和系统,涉及目标检测的技术领域。在该方法中,服务器获取待检测图片的基础特征图;服务器根据多尺度通道注意力机制,对所述基础特征图进行多尺度特征提取,得到多尺度特征图;服务器将所述多尺度特征图输入至自适应特征融合网络中,得到所述待检测图片的显著区域,以完成对所述待检测图片的显著区域推断。实施本申请提供的技术方案,具有提高图片显著区域的推断准确性的效果。

    一种重识别辅助的多阶段视频行人多目标跟踪方法及模型

    公开(公告)号:CN116363579A

    公开(公告)日:2023-06-30

    申请号:CN202310211972.4

    申请日:2023-03-07

    Abstract: 本发明公开了一种重识别辅助的多阶段视频行人多目标跟踪方法及模型,搭建包括作为骨干网络的ResNet50、多层特征聚合模块、包括一个上下文抓取模块和一个注意力引导模块的注意力引导的上下文聚合模块、IDAUP子模块的MSMOT模型,并用其检测得到行人的检测边界框,并提取行人的重识别特征;注意力引导模块包括上下文注意力模块和内容注意力模块,IDAUP子模块输出浅层特征信息和深层特征信息分别作为重识别分支和检测分支的输入,检测分支采用三个并行的Head分别用于估计HeatMap、中心点的偏移以及边界框的尺寸;通过以卡尔曼滤波和匈牙利算法为基础的数据关联算法,依托检测边界框与重识别特征,完成检测边界框与相对应的行人轨迹之间的匹配。

Patent Agency Ranking