-
公开(公告)号:CN111829782B
公开(公告)日:2021-12-07
申请号:CN202010688208.2
申请日:2020-07-16
Applicant: 苏州大学
IPC: G01M13/045 , G06K9/62 , G06N20/10
Abstract: 本发明公开了一种基于自适应流形嵌入动态分布对齐的故障诊断方法,本方法通过自动计算最优的子空间维数,并计算测地线流式核和变换后的流形特征表示,可以有效地避免数据在原始欧式空间的特征扭曲。引入相似度度量A‑distance定义一个自适应因子,动态调整样本数据条件分布和边缘分布的相对权重,有效地缩小了源域和目标域样本的分布差异,极大提高了变工况下滚动轴承故障诊断的准确性和有效性,该方法可解释性强,对计算机硬件资源的要求较低,执行速度更快,同时具备出色的诊断精确度、算法收敛性和参数鲁棒性。该方法尤其适用于变工况下多场景、多故障的轴承故障诊断,可广泛地应用于机械、电力、化工、航空等复杂系统的多变工况下的故障诊断任务。
-
公开(公告)号:CN112414714A
公开(公告)日:2021-02-26
申请号:CN202011224083.4
申请日:2020-11-05
Applicant: 苏州大学
IPC: G01M13/045
Abstract: 本发明公开了一种基于自适应流形概率分布的轴承故障诊断方法,包括以下步骤:先构建多个可迁移域和迁移任务;再利用傅里叶变换将每个迁移任务中的数据样本均转化为频域数据,并将频域数据输入GFK算法模型中,利用GFK算法模型计算出每个迁移任务中与轴承故障相关的流形特征表示矩阵;根据流形特征表示,计算出每个迁移任务中的目标域与源域中心的余弦距离,并定义域内分类器学习的目标函数;再对目标函数进行求解,得到目标域的概率分布矩阵;在概率分布矩阵中选择目标域内每个数据样本对应的最大概率值所对应的标签,作为该目标域数据样本的预测标签。本发明提升了轴承故障诊断的诊断正确率和诊断效率。
-
公开(公告)号:CN111651937A
公开(公告)日:2020-09-11
申请号:CN202010496380.8
申请日:2020-06-03
Applicant: 苏州大学
IPC: G06F30/27 , G06N3/04 , G06N3/08 , G01M13/045 , G06F119/02
Abstract: 本发明涉及一种变工况下滚动轴承的故障诊断方法,其在利用卷积神经网络学习模型的基础上,结合迁移学习的算法处理机械设备复杂多变的工况导致深度学习模型通用性变差的问题。本发明首先对不同工况下采集的数据进行切割划分样本,利用FFT对样本进行预处理,然后利用改进的ResNet-50提取样本的低层次特征,接着多尺度特征提取器从不同角度分析低层次特征得到高层次特征作为分类器的输入。在训练的过程中同时提取训练样本跟测试样本的高层次特征,计算两者的条件分布距离作为目标函数的一部分反向传播以实现类内自适应,降低域漂移的影响,使得深度学习模型能更好地胜任变工况下的故障诊断任务。
-
公开(公告)号:CN111829782A
公开(公告)日:2020-10-27
申请号:CN202010688208.2
申请日:2020-07-16
Applicant: 苏州大学
IPC: G01M13/045 , G06K9/62 , G06N20/10
Abstract: 本发明公开了一种基于自适应流形嵌入动态分布对齐的故障诊断方法,本方法通过自动计算最优的子空间维数,并计算测地线流式核和变换后的流形特征表示,可以有效地避免数据在原始欧式空间的特征扭曲。引入相似度度量A-distance定义一个自适应因子,动态调整样本数据条件分布和边缘分布的相对权重,有效地缩小了源域和目标域样本的分布差异,极大提高了变工况下滚动轴承故障诊断的准确性和有效性,该方法可解释性强,对计算机硬件资源的要求较低,执行速度更快,同时具备出色的诊断精确度、算法收敛性和参数鲁棒性。该方法尤其适用于变工况下多场景、多故障的轴承故障诊断,可广泛地应用于机械、电力、化工、航空等复杂系统的多变工况下的故障诊断任务。
-
公开(公告)号:CN111651937B
公开(公告)日:2023-07-25
申请号:CN202010496380.8
申请日:2020-06-03
Applicant: 苏州大学
IPC: G06F30/27 , G06N3/0464 , G06N3/047 , G06N3/096 , G01M13/045 , G06F119/02
Abstract: 本发明涉及一种变工况下滚动轴承的故障诊断方法,其在利用卷积神经网络学习模型的基础上,结合迁移学习的算法处理机械设备复杂多变的工况导致深度学习模型通用性变差的问题。本发明首先对不同工况下采集的数据进行切割划分样本,利用FFT对样本进行预处理,然后利用改进的ResNet‑50提取样本的低层次特征,接着多尺度特征提取器从不同角度分析低层次特征得到高层次特征作为分类器的输入。在训练的过程中同时提取训练样本跟测试样本的高层次特征,计算两者的条件分布距离作为目标函数的一部分反向传播以实现类内自适应,降低域漂移的影响,使得深度学习模型能更好地胜任变工况下的故障诊断任务。
-
公开(公告)号:CN213239397U
公开(公告)日:2021-05-18
申请号:CN202022674546.9
申请日:2020-11-18
Applicant: 苏州大学
IPC: G01M7/02 , G01M13/045
Abstract: 本实用新型公开了一种轨道车辆轴承振动测试装置,包括底座、轮轨模拟机构、轴箱悬挂模拟机构、径向力模拟机构以及扭矩模拟机构,轮轨模拟机构包括第一转轴、第一转轮、第一回转轴承、第一回转轴承座,轴箱悬挂模拟机构包括第二转轴、第二转轮、第二回转轴承、第二回转轴承座、滑移轴及直线轴承,径向力模拟机构包括加载轴承、加载轴承套、加载座、丝杆以及丝母,扭矩模拟机构包括变频电机、第一皮带轮、第二皮带轮以及传动皮带。本实用新型通过设置轮轨模拟机构和摇摆机构,能够更大程度的接近轨道车辆轴承实际运转情况,可以很好的模拟实际轨道车辆轴承的受力情况,以及轮轨之间的弹性接触对轴承故障检测的影响。
-
-
-
-
-