变工况下动态联合分布对齐网络的轴承故障诊断方法

    公开(公告)号:CN112629863B

    公开(公告)日:2022-03-01

    申请号:CN202011632478.8

    申请日:2020-12-31

    Applicant: 苏州大学

    Abstract: 本发明公开了一种变工况下动态联合分布对齐网络的轴承故障诊断方法,包括以下步骤:采集不同工况下的轴承振动数据,获得源域样本和目标域样本;构建动态联合分布对齐的深度卷积神经网络模型;将源域样本和目标域样本同时送入参数初始化的深度卷积神经网络模型,特征提取器提取源域样本和目标域样本的高层次特征;计算边缘分布距离和条件分布距离;根据边缘分布距离和条件分布距离获得联合分布距离,将联合分布距离与标签损失结合以获得目标函数;利用随机梯度下降法对目标函数进行优化,训练深度卷积神经网络模型。其能够降低域漂移的影响,使得深度学习模型能够很好完成变工况下的故障诊断任务,速度快,运算量小。

    基于动态指数对抗性自适应的滚动轴承故障诊断方法

    公开(公告)号:CN114429152A

    公开(公告)日:2022-05-03

    申请号:CN202111677762.1

    申请日:2021-12-31

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于动态指数对抗性自适应的滚动轴承故障诊断方法,包括以下步骤:采集不同工况下轴承运行时的振动数据;将源域特征和混合域样本特征作为输入,对抗训练分类器与域鉴别器并对特征提取器进行优化,计算损失;利用损失构建轴承故障诊断模型的目标函数,寻找最佳参数,直至轴承故障诊断模型完成,在训练过程中利用动态指数调节因子缩小源域样本和目标域样本的边缘分布和条件分布差异;将目标域样本输入轴承故障诊断模型,输出轴承故障诊断结果。本发明能够以精确定量地衡量边缘分布和条件分布在整体数据分布中的比重,从而使得模型可以更有针对性的对不同工况下的数据集进行迁移,实现精确地故障诊断。

    变工况下动态联合分布对齐网络的轴承故障诊断方法

    公开(公告)号:CN112629863A

    公开(公告)日:2021-04-09

    申请号:CN202011632478.8

    申请日:2020-12-31

    Applicant: 苏州大学

    Abstract: 本发明公开了一种变工况下动态联合分布对齐网络的轴承故障诊断方法,包括以下步骤:采集不同工况下的轴承振动数据,获得源域样本和目标域样本;构建动态联合分布对齐的深度卷积神经网络模型;将源域样本和目标域样本同时送入参数初始化的深度卷积神经网络模型,特征提取器提取源域样本和目标域样本的高层次特征;计算边缘分布距离和条件分布距离;根据边缘分布距离和条件分布距离获得联合分布距离,将联合分布距离与标签损失结合以获得目标函数;利用随机梯度下降法对目标函数进行优化,训练深度卷积神经网络模型。其能够降低域漂移的影响,使得深度学习模型能够很好完成变工况下的故障诊断任务,速度快,运算量小。

Patent Agency Ranking