一种逆阻型IGBT
    1.
    发明授权

    公开(公告)号:CN107731901B

    公开(公告)日:2024-02-23

    申请号:CN201711155622.1

    申请日:2017-11-20

    Abstract: 本发明属于功率半导体技术领域,涉及一种逆阻型IGBT。本发明的器件,在正向电场截止层N1下表面形成间断高浓度P+集电区和浮空P1区,且P+集电区和浮空的P1被N1阻隔。施加反向阻断电压时,浮空的P1可辅助耗尽N1,降低高浓度的P+集电区/N1结面处高电场峰值,避免集电结发生提前击穿,最终反向耐压电场被N2以及槽结构共同截止;对器件施加正向阻断电压时,浮空的P1和漂移区被N1阻隔,高浓度的N1使正向电场被截止,耗尽区无法扩展到P1,正向耐压不会发生退化。相比于NPT型IGBT结构,可缩短漂移区厚度,实现导通压降和关断损耗更好的折中特性。

    一种具有载流子存储层的槽型SOI LIGBT

    公开(公告)号:CN106920842B

    公开(公告)日:2023-03-28

    申请号:CN201710328752.4

    申请日:2017-05-11

    Abstract: 本发明属于功率半导体技术领域,涉及一种具有载流子存储层的槽型SOI LIGBT。本发明相对于传统结构,具有以下几个特点:一、具有高浓度的载流子存储层,其在正向导通时起阻挡空穴的作用,使界面附近的空穴浓度增大,根据电中性原理,更多的电子注入漂移区,电导调制效应增强,进而降低器件的正向导通压降。同时,引入介质槽,在物理上阻挡空穴被阴极收集,起到进一步降低正向导通压降的作用,更重要的是,在正向阻断时起到辅助耗尽载流子存储层的作用,使得在高浓度载流子存储层的情况下器件保持高耐压;二、采用三栅结构,提高沟道密度;三、三栅结构与介质槽可以同时制作,无需额外的工艺步骤。

    一种逆阻型IGBT
    4.
    发明公开

    公开(公告)号:CN107749420A

    公开(公告)日:2018-03-02

    申请号:CN201711155364.7

    申请日:2017-11-20

    CPC classification number: H01L29/7397 H01L29/0619 H01L29/402

    Abstract: 本发明属于功率半导体技术领域,涉及一种逆阻型IGBT。本发明的正向电场截至层N1不是连续的电场截止层,且P+集电区和漂移区被N1阻隔,紧邻两相邻P+集电区之间的漂移区背面形成与集电极电气相连的场板。器件的发射极端包含反向电场截止层N2和槽结构。施加反向偏压时,与集电极电气相连的场板将不连续的集电结耗尽线在漂移区中合并起来,在没有完全耗尽高浓度N1时,耗尽区可在漂移区内扩展,避免集电结发生击穿,实现很好的反向阻断能力。相比于也具有反向耐压的NPT型IGBT,施加正向阻断电压时,N1和与集电极电气相连的场板共同作用,使正向电场被截止,在N1、N2和槽结构共同作用下,缩短漂移区长度,实现导通压降和关断损耗更好的折中特性。

    一种具有载流子存储层的槽型SOI LIGBT

    公开(公告)号:CN106920842A

    公开(公告)日:2017-07-04

    申请号:CN201710328752.4

    申请日:2017-05-11

    CPC classification number: H01L29/7394

    Abstract: 本发明属于功率半导体技术领域,涉及一种具有载流子存储层的槽型SOI LIGBT。本发明相对于传统结构,具有以下几个特点:一、具有高浓度的载流子存储层,其在正向导通时起阻挡空穴的作用,使界面附近的空穴浓度增大,根据电中性原理,更多的电子注入漂移区,电导调制效应增强,进而降低器件的正向导通压降。同时,引入介质槽,在物理上阻挡空穴被阴极收集,起到进一步降低正向导通压降的作用,更重要的是,在正向阻断时起到辅助耗尽载流子存储层的作用,使得在高浓度载流子存储层的情况下器件保持高耐压;二、采用三栅结构,提高沟道密度;三、三栅结构与介质槽可以同时制作,无需额外的工艺步骤。

    一种逆阻型IGBT
    10.
    发明授权

    公开(公告)号:CN107749420B

    公开(公告)日:2023-09-01

    申请号:CN201711155364.7

    申请日:2017-11-20

    Abstract: 本发明属于功率半导体技术领域,涉及一种逆阻型IGBT。本发明的正向电场截至层N1不是连续的电场截止层,且P+集电区和漂移区被N1阻隔,紧邻两相邻P+集电区之间的漂移区背面形成与集电极电气相连的场板。器件的发射极端包含反向电场截止层N2和槽结构。施加反向偏压时,与集电极电气相连的场板将不连续的集电结耗尽线在漂移区中合并起来,在没有完全耗尽高浓度N1时,耗尽区可在漂移区内扩展,避免集电结发生击穿,实现很好的反向阻断能力。相比于也具有反向耐压的NPT型IGBT,施加正向阻断电压时,N1和与集电极电气相连的场板共同作用,使正向电场被截止,在N1、N2和槽结构共同作用下,缩短漂移区长度,实现导通压降和关断损耗更好的折中特性。

Patent Agency Ranking