-
公开(公告)号:CN115478990B
公开(公告)日:2024-09-20
申请号:CN202211144882.X
申请日:2022-09-20
Applicant: 燕山大学
IPC: F03D17/00
Abstract: 本发明涉及一种基于气动系数的风力机风速时间参数确定方法,其包括以下步骤,骤1:激光雷达测风仪测量风速时间序列;步骤2:建立气动系数迭代模型,构建激光雷达测量风速的迭代计算模型;步骤3:根据雷达测量风速的迭代计算模型,计算风力机期望位置处风速;步骤4:获取迭代过程的积累时间,完成风力机的风速时间序列数据处理。本发明通过建立气动系数迭代模型和风速迭代模型实现气动系数的实时迭代更新,完成了对激光雷达测风数据进行处理,获得风轮平面有效风力机期望位置处风速时间序列数据;本发明的计算结果可用于风力机的实时控制,提高风力机的发电效率,降低风力机所受载荷,提高了风力机的使用寿命。
-
公开(公告)号:CN115478990A
公开(公告)日:2022-12-16
申请号:CN202211144882.X
申请日:2022-09-20
Applicant: 燕山大学
IPC: F03D17/00
Abstract: 本发明涉及一种基于气动系数的风力机风速时间参数确定方法,其包括以下步骤,骤1:激光雷达测风仪测量风速时间序列;步骤2:建立气动系数迭代模型,构建激光雷达测量风速的迭代计算模型;步骤3:根据雷达测量风速的迭代计算模型,计算风力机期望位置处风速;步骤4:获取迭代过程的积累时间,完成风力机的风速时间序列数据处理。本发明通过建立气动系数迭代模型和风速迭代模型实现气动系数的实时迭代更新,完成了对激光雷达测风数据进行处理,获得风轮平面有效风力机期望位置处风速时间序列数据;本发明的计算结果可用于风力机的实时控制,提高风力机的发电效率,降低风力机所受载荷,提高了风力机的使用寿命。
-
公开(公告)号:CN115126652A
公开(公告)日:2022-09-30
申请号:CN202210714013.X
申请日:2022-06-22
Applicant: 燕山大学
Abstract: 本发明涉及一种基于预设性能控制的液压型风电机组功率追踪控制方法,其包括以下步骤,步骤一:建立液压型风电机组的状态空间模型并确定追踪目标;步骤二:引入性能评估函数用来定义追踪误差量化指标;步骤三:根据预设性能控制原理,引入误差转化信号,并建立追踪误差和误差转化信号之间的关系;步骤四:根据误差转化信号,设计液压型风电机组最大功率追踪控制方法;步骤五:替换微分项,获取最终的液压型风电机组最大功率追踪控制方法,控制风电机组。本发明提出的控制方法基于预设性能控制原理,避免小信号线性化方法造成的误差,提高控制精度;使用双曲正切函数替换微分项,避免控制器被高频噪声干扰,提高系统的测量精度。
-
公开(公告)号:CN115126652B
公开(公告)日:2024-08-09
申请号:CN202210714013.X
申请日:2022-06-22
Applicant: 燕山大学
Abstract: 本发明涉及一种基于预设性能控制的液压型风电机组功率追踪控制方法,其包括以下步骤,步骤一:建立液压型风电机组的状态空间模型并确定追踪目标;步骤二:引入性能评估函数用来定义追踪误差量化指标;步骤三:根据预设性能控制原理,引入误差转化信号,并建立追踪误差和误差转化信号之间的关系;步骤四:根据误差转化信号,设计液压型风电机组最大功率追踪控制方法;步骤五:替换微分项,获取最终的液压型风电机组最大功率追踪控制方法,控制风电机组。本发明提出的控制方法基于预设性能控制原理,避免小信号线性化方法造成的误差,提高控制精度;使用双曲正切函数替换微分项,避免控制器被高频噪声干扰,提高系统的测量精度。
-
-
-