-
公开(公告)号:CN116231139A
公开(公告)日:2023-06-06
申请号:CN202310194663.0
申请日:2023-03-03
Applicant: 桂林电子科技大学
IPC: H01M10/54
Abstract: 本发明公开了一种废弃石墨回收‑活化方法,包括以下步骤:1,石墨的常规回收;2,导电碳和粘结剂的热解去除;3,回收石墨的两步活化法;4,煅烧反应产物的后处理,即可得到分层石墨纳米片。分层石墨纳米片作为锂硫电池正极材料硫载体应用,在0.1C电流密度下的初始容量为1410mAh·g‑1;100次充放电循环后,容量剩余841mAh·g‑1,100次充放电循环后容量保持率为59.6%。本发明具有:原料成本低、工艺设备简单、废液处理简单;实现调节、重构石墨的微观结构——由块状结构刻蚀为分层纳米片结构,从而提高性能的特点。
-
公开(公告)号:CN116768151B
公开(公告)日:2024-12-27
申请号:CN202310756099.7
申请日:2023-06-26
Applicant: 桂林电子科技大学
IPC: C01B3/00 , C01G23/047 , C01B21/082 , C01B6/24
Abstract: 本发明公开了一种石墨相氮化碳基二氧化钛掺杂氢化锂铝储氢材料,以双氰胺和硫酸氧钛为原料,双氰胺为碳源和氮源,硫酸氧钛为钛源;在研磨混合后进行煅烧,之后,以TiO2@g‑C3N4的掺杂量为3‑10wt%,与氢化锂铝进行球磨;其中,g‑C3N4的微观形貌为多孔结构,TiO2的微观形貌为纳米颗粒结构,TiO2纳米颗粒的粒径为8‑9nm,TiO2@g‑C3N4的微观形貌为TiO2均匀负载在g‑C3N4表面。其制备方法包括:1,原料的预处理;2,石墨相氮化碳基二氧化钛的制备;3,石墨相氮化碳基二氧化钛掺杂氢化锂铝储氢材料的制备。作为储氢材料的应用,初始放氢温度为72‑82.3℃,放氢量为6.6‑7.3wt%,放氢率为69.8‑71.7%。具有降低工艺难度,降低生产成本,提高产物一致性的优点。
-
公开(公告)号:CN115504467B
公开(公告)日:2023-09-22
申请号:CN202211257893.9
申请日:2022-10-14
Applicant: 桂林电子科技大学
IPC: C01B32/318 , C01B32/348 , H01G11/34 , H01G11/44 , H01G11/86
Abstract: 本发明公开了一种基于含氯有机物和碱溶液预处理的多孔碳材料,以含氯有机物为碳源,采用碱溶液预处理的方法获得氮硫双掺杂前驱体,再经煅烧即可制得多孔碳材料;所述含氯有机物为聚氯乙烯,所述氮硫双掺杂前驱体中,以含氮化合物为氮源,含硫化合物为硫源;所述含氮化合物为DMF溶液,含硫化合物为硫脲。其制备方法包括以下步骤:1,含氯有机物的碱溶液预处理;2,前驱体的煅烧。作为超级电容器电极材料的应用,当电流密度为0.5A g‑1时,比电容的值在290‑300F g‑1。本发明具有以下优点:1、实现“白色污染”的回收再利用;2、同时实现脱氯和氮硫掺杂;3、通过二次造孔对孔结构进行调节;4、DMF溶液既起到溶剂的作用,又起氮源的作用。
-
公开(公告)号:CN116282236A
公开(公告)日:2023-06-23
申请号:CN202211680431.8
申请日:2022-12-27
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于PBA‑刻蚀‑煅烧硫化法的镍钴双金属硫化物,以六水合硝酸镍、钴氰化钾、二水合柠檬酸三钠为原料,首先,通过静置陈化法合成Ni‑Co‑PBA,然后,再经过氨水刻蚀处理后获得Ni‑Co‑Etch,最后,通过煅烧硫化即可。其微观形貌呈纳米立方结构,表面粗糙且中心位置向内凹陷,结构疏松,存在大量微孔,粒径尺寸为150‑250nm。其制备方法包括以下步骤:1,Ni‑Co‑PBA的制备;2,Ni‑Co‑PBA的刻蚀;3,Ni‑Co‑Etch的硫化处理。作为超级电容器电极材料的应用,在三电极体系中,比电容为1800‑1900F g‑1;在两电极体系中,功率密度为800‑850W kg‑1时,能量密度为60‑62Wh kg‑1;在10000圈循环后,循环稳定性保持为初始比电容的75‑85%。
-
公开(公告)号:CN114974916A
公开(公告)日:2022-08-30
申请号:CN202210776159.7
申请日:2022-07-04
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种纤维状MXene负载NiCoS复合材料,以四水合乙酸镍、乙酸钴、均苯三甲酸、1,4‑二氮杂双环[2,2,2]辛烷和十二烷基硫酸钠为原料,经水热反应制得NiCo‑MOFs;以Ti3AlC2、氟化锂和浓盐酸为原料,经刻蚀处理和震荡处理得到纤维状MXene;最后,以NiCo‑MOFs为前驱体,纤维状MXene为基体,加入硫代乙酰胺,经第二次水热反应,在纤维状MXene表面均匀负载颗粒状NiCoS复合材料即可制得;少层片状MXene具有微米的片状结构;纤维状MXene为直径为10‑40 nm的纤维状结构;颗粒状NiCoS的直径为5‑30nm。其制备方法包括以下步骤:1,NiCo‑MOFs的制备;2,纤维状MXene的制备;3,NiCoS@MXene的制备。作为超级电容器电极材料的应用,比电容为1300‑1500 F g‑1;能量密度高达63.3 W h kg‑1;10000圈循环后的循环稳定性保持为原始的73%。
-
公开(公告)号:CN116159600A
公开(公告)日:2023-05-26
申请号:CN202211714128.5
申请日:2022-12-30
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于共价‑金属有机框架双载体的复合材料,由JUC‑505共价有机框架、ZIF‑67金属有机框架和Ru元素组成,其中,在JUC‑505上生长ZIF‑67得到JUC‑505/ZIF‑67作为双载体,再通过负载Ru元素得到Ru‑(JUC‑505/ZIF‑67),具有磁性。原料包括无水碳酸钾、四氟对苯二腈、六羟基三亚苯、均三甲苯、1‑甲基吡咯烷、六水合硝酸钴、2‑甲基咪唑、三氯化钌水合物和氢氩混合气。其制备方法包括以下步骤:1,JUC‑505的制备;2,JUC‑505/ZIF‑67的制备;3,Ru‑(JUC‑505/ZIF‑67)的制备。作为硼氢化钠水解制氢催化剂的应用,在303 K下提供的产氢速率为25830‑35291 mL∙min‑1∙g‑1,放氢量为理论值的100%,催化放氢的活化能为Ea=23.9‑30.3 kJ∙mol‑1;在303 K下,10次回收/重复使用后,保留初始催化活性的83.2‑91.0%。
-
公开(公告)号:CN115948150A
公开(公告)日:2023-04-11
申请号:CN202211465386.4
申请日:2022-11-22
Applicant: 桂林电子科技大学
IPC: C09K5/06 , C09K5/14 , A01N59/16 , A01N59/20 , A01N25/10 , A01N25/08 , A01P1/00 , A01P3/00 , A41D31/30 , A41D31/14 , A41D31/04 , A41D13/005
Abstract: 本发明涉及一种基于银纳米线的控温抗菌柔性复合材料,以膨胀石墨、正十八烷、银纳米线、无纺布材料为原料,通过物理吸附和热压法制得,具有柔性、抗菌性能、相变储热性能和控温性能;膨胀石墨为基体材料,正十八烷为相变材料,银纳米线为抗菌材料,无纺布为支撑材料。其制备方法包括以下步骤:1,银纳米线的制备,2,掺杂银纳米线相变控温材料的制备,3,基于银纳米线的控温抗菌柔性复合材料的制备。应用于热管理防护服控温抗菌领域,导热系数为1.4373‑2.0130W/(m·K);储热密度为78.49‑124.64 J/g;控温时间为133‑214s;相变控温温度为20‑35℃,处于人体适宜温度范围;在高温工作环境下,内环境温度低于外环境4.6‑6.6℃。
-
公开(公告)号:CN115504467A
公开(公告)日:2022-12-23
申请号:CN202211257893.9
申请日:2022-10-14
Applicant: 桂林电子科技大学
IPC: C01B32/318 , C01B32/348 , H01G11/34 , H01G11/44 , H01G11/86
Abstract: 本发明公开了一种基于含氯有机物和碱溶液预处理的多孔碳材料,以含氯有机物为碳源,采用碱溶液预处理的方法获得氮硫双掺杂前驱体,再经煅烧即可制得多孔碳材料;所述含氯有机物为聚氯乙烯,所述氮硫双掺杂前驱体中,以含氮化合物为氮源,含硫化合物为硫源;所述含氮化合物为DMF溶液,含硫化合物为硫脲。其制备方法包括以下步骤:1,含氯有机物的碱溶液预处理;2,前驱体的煅烧。作为超级电容器电极材料的应用,当电流密度为0.5A g‑1时,比电容的值在290‑300F g‑1。本发明具有以下优点:1、实现“白色污染”的回收再利用;2、同时实现脱氯和氮硫掺杂;3、通过二次造孔对孔结构进行调节;4、DMF溶液既起到溶剂的作用,又起氮源的作用。
-
公开(公告)号:CN116159600B
公开(公告)日:2025-01-21
申请号:CN202211714128.5
申请日:2022-12-30
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于共价‑金属有机框架双载体的复合材料,由JUC‑505共价有机框架、ZIF‑67金属有机框架和Ru元素组成,其中,在JUC‑505上生长ZIF‑67得到JUC‑505/ZIF‑67作为双载体,再通过负载Ru元素得到Ru‑(JUC‑505/ZIF‑67),具有磁性。原料包括无水碳酸钾、四氟对苯二腈、六羟基三亚苯、均三甲苯、1‑甲基吡咯烷、六水合硝酸钴、2‑甲基咪唑、三氯化钌水合物和氢氩混合气。其制备方法包括以下步骤:1,JUC‑505的制备;2,JUC‑505/ZIF‑67的制备;3,Ru‑(JUC‑505/ZIF‑67)的制备。作为硼氢化钠水解制氢催化剂的应用,在303 K下提供的产氢速率为25830‑35291 mL∙min‑1∙g‑1,放氢量为理论值的100%,催化放氢的活化能为Ea=23.9‑30.3 kJ∙mol‑1;在303 K下,10次回收/重复使用后,保留初始催化活性的83.2‑91.0%。
-
公开(公告)号:CN117995566A
公开(公告)日:2024-05-07
申请号:CN202410240131.0
申请日:2024-03-04
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种非晶态NiCo‑LDH/CC‑C复合材料,以硝酸镍、硝酸钴、碳布CC、羧基纤维素钠CMC为原料,以去离子水为溶剂,通过电沉积法制得NiCo‑LDH/CC‑C;所述NiCo‑LDH/CC‑C由NiCo‑LDH和CC复合而得,NiCo‑LDH为非晶态结构,微观形貌为纳米片状结构,厚度为10‑20nm,负载方向为垂直于CC表面且稳定负载于CC表面。其制备方法包括以下步骤:1,镍钴混合溶液的准备;2,NiCo‑LDH/CC‑C的制备。作为超级电容器电极材料的应用,在0‑0.5V范围内充放电,在放电电流密度为1A/g时,NiCo‑LDH/CC具有1500‑2100F g‑1的比电容;当质量负载为3.5‑4.2mg cm‑2时,在放电电流密度为2mA cm‑2时,面积比电容为6.4‑8.7F cm‑2。
-
-
-
-
-
-
-
-
-