-
公开(公告)号:CN108766785B
公开(公告)日:2020-05-22
申请号:CN201810708455.7
申请日:2018-07-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种石墨烯‑聚吡咯‑钴镍双金属氢氧化物复合材料,其制备方法包括:1)溶液的配置;2)石墨烯‑聚吡咯的制备;3)石墨烯‑聚吡咯负载钴镍双金属氢氧化物复合材料的制备。作为超级电容器电极材料的应用,在0‑0.35V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到2500‑2600 F/g。本发明以蒸馏水为溶剂,石墨烯‑聚吡咯做为基底材料,加入钴和镍盐室温搅拌至溶解混合均匀,转移到反应釜中水热反应,制得石墨烯‑聚吡咯‑钴镍双金属氢氧化物复合材料。石墨烯和聚吡咯的掺杂,提高了材料的导电性;钴镍双金属氢氧化物分布在基底材料表面,提高了材料的导电性,制备工艺简单,表现出优良的电化学特性,可用超级电容器的电极材料。
-
公开(公告)号:CN108766785A
公开(公告)日:2018-11-06
申请号:CN201810708455.7
申请日:2018-07-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种石墨烯‑聚吡咯‑钴镍双金属氢氧化物复合材料,其制备方法包括:1)溶液的配置;2)石墨烯‑聚吡咯的制备;3)石墨烯‑聚吡咯负载钴镍双金属氢氧化物复合材料的制备。作为超级电容器电极材料的应用,在0‑0.35V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到2500‑2600 F/g。本发明以蒸馏水为溶剂,石墨烯‑聚吡咯做为基底材料,加入钴和镍盐室温搅拌至溶解混合均匀,转移到反应釜中水热反应,制得石墨烯‑聚吡咯‑钴镍双金属氢氧化物复合材料。石墨烯和聚吡咯的掺杂,提高了材料的导电性;钴镍双金属氢氧化物分布在基底材料表面,提高了材料的导电性,制备工艺简单,表现出优良的电化学特性,可用超级电容器的电极材料。
-
公开(公告)号:CN108760855A
公开(公告)日:2018-11-06
申请号:CN201810524155.3
申请日:2018-05-28
Applicant: 桂林电子科技大学
IPC: G01N27/327 , G01N27/30
CPC classification number: G01N27/3278 , G01N27/30
Abstract: 本发明公开了一种石墨烯‑聚吡咯‑金纳米粒子复合材料,采用原位化学聚合和静电吸附的相结合的方法,将金纳米粒子负载与石墨烯‑聚吡咯复合材料上。其制备方法包括以下步骤:1)溶液的配置;2)溶液的混合反应制备聚吡咯‑石墨烯米复合材料;3)金纳米粒子溶液的制备;4)金纳米粒子的吸附。石墨烯‑聚吡咯‑金纳米粒子复合材料的应用,用于阻抗型大肠杆菌生物传感器修饰电极的应用,检测大肠杆菌的线性范围为1×102~1×107 CFU/mL,最低检出限为100 CFU/mL。本发明所制备的阻抗型大肠杆菌生物传感器还具有操作简单、成本低廉、使用方便、选择性高等优点,因而在食品安全和临床分析等领域中具有巨大的潜在应用价值。
-
公开(公告)号:CN108760855B
公开(公告)日:2020-07-17
申请号:CN201810524155.3
申请日:2018-05-28
Applicant: 桂林电子科技大学
IPC: G01N27/327 , G01N27/30
Abstract: 本发明公开了一种石墨烯‑聚吡咯‑金纳米粒子复合材料,采用原位化学聚合和静电吸附的相结合的方法,将金纳米粒子负载与石墨烯‑聚吡咯复合材料上。其制备方法包括以下步骤:1)溶液的配置;2)溶液的混合反应制备聚吡咯‑石墨烯米复合材料;3)金纳米粒子溶液的制备;4)金纳米粒子的吸附。石墨烯‑聚吡咯‑金纳米粒子复合材料的应用,用于阻抗型大肠杆菌生物传感器修饰电极的应用,检测大肠杆菌的线性范围为1×102~1×107 CFU/mL,最低检出限为100 CFU/mL。本发明所制备的阻抗型大肠杆菌生物传感器还具有操作简单、成本低廉、使用方便、选择性高等优点,因而在食品安全和临床分析等领域中具有巨大的潜在应用价值。
-
公开(公告)号:CN108520828A
公开(公告)日:2018-09-11
申请号:CN201810280474.4
申请日:2018-04-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种高度石墨化的二维多洞的碳纳米片,由酚醛树脂的合成原料和醋酸钙混合,制得掺杂有醋酸钙的酚醛树脂复合物,再经过高温碳化、酸洗、活化后得到。碳纳米片的直径为1-2μm,孔洞为直径为20-100 nm。其制备方法包括以下步骤:1)酚醛树脂和醋酸钙复合物的制备;2)高度石墨化的二维多洞的碳纳米片的制备。作为超级电容器电极材料的应用,在-1.0~0 V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到200-300 F/g。本发明制备工艺简单、成本低、效果好。采用钙代替过渡金属作为催化剂,易除去,提高了材料的导电性和电解质离子的迁移率;表现出优良的电化学特性和化学稳定性,在超级电容器材料领域具有广阔的应用前景。
-
-
-
-