-
公开(公告)号:CN111397421A
公开(公告)日:2020-07-10
申请号:CN202010200354.6
申请日:2020-03-20
Applicant: 松下制冷(大连)有限公司
IPC: F28D21/00
Abstract: 本发明属于空调设备技术领域,具体涉及一种乏汽取热器及其应用的乏汽余热回收机组,乏汽可直接进入乏汽余热回收机组的乏汽取热器内进行乏汽余热提取,作为乏汽余热回收机组的驱动热源进行供热,乏汽经过乏汽取热器换热后形成的乏汽凝结水进行回收加以再利用,有效回收了乏汽的余热。该乏汽余热回收机组无需添加溴化锂溶液,以冷剂水作为循环媒介进行乏汽余热回收,再将提取的乏汽热量传递给热水进行供热,大大降低了机组的投资成本和运行费用。
-
公开(公告)号:CN111397421B
公开(公告)日:2021-12-24
申请号:CN202010200354.6
申请日:2020-03-20
Applicant: 松下制冷(大连)有限公司
IPC: F28D21/00
Abstract: 本发明属于空调设备技术领域,具体涉及一种乏汽取热器及其应用的乏汽余热回收机组,乏汽可直接进入乏汽余热回收机组的乏汽取热器内进行乏汽余热提取,作为乏汽余热回收机组的驱动热源进行供热,乏汽经过乏汽取热器换热后形成的乏汽凝结水进行回收加以再利用,有效回收了乏汽的余热。该乏汽余热回收机组无需添加溴化锂溶液,以冷剂水作为循环媒介进行乏汽余热回收,再将提取的乏汽热量传递给热水进行供热,大大降低了机组的投资成本和运行费用。
-
公开(公告)号:CN115325856A
公开(公告)日:2022-11-11
申请号:CN202210846116.1
申请日:2022-07-19
Applicant: 松下制冷(大连)有限公司 , 哈尔滨工程大学
Abstract: 本发明属于换热设备技术领域,公开了采用组合式液体散布装置的换热器及其应用的吸收式机组。吸收式机组包括吸收器、再生器、蒸发器、冷凝器,蒸发器与吸收器上下布置在同一个筒体中,冷凝器与再生器上下布置在同一个筒体中,吸收器、再生器、蒸发器采用液体滴淋装置和液体喷淋装置组合式液体散布装置的换热器结构,将液体汇集在锥形集液箱中,不会因机组倾斜或摇摆发生液体倾甩而造成液体淹管和送液泵的气蚀问题,传热管和管板采用特殊材料、胀焊加工工艺,实现船用溴化锂吸收式机组在倾斜或摇摆状态下液体能够均匀的分配和散布,并解决了机组冷剂污染、海水腐蚀等问题,保障了机组运行的稳定性,实现了能源的有效利用。
-
公开(公告)号:CN106766342B
公开(公告)日:2022-07-05
申请号:CN201611138615.6
申请日:2016-12-12
Applicant: 松下制冷(大连)有限公司 , 中冶焦耐(大连)工程技术有限公司
IPC: F25B15/06 , F24D3/18 , C02F1/04 , C02F9/10 , C02F101/16
Abstract: 本发明涉及焦化过程中的氨蒸汽处理领域,提出了一种利用溴化锂吸收式热泵回收蒸氨塔塔顶氨汽余热系统,氨蒸汽排出口通过三通阀分别并行连接分缩器及吸收式热泵,氨蒸汽排出口通过管路分别并行连接蒸发器入口、采暖装置高温侧入口及再生器入口;冷却后的氨蒸汽通过管路经蒸发器出口、采暖装置高温侧出口及再生器出口连接至气液分离器。采暖装置的低温侧入口与系统采暖水回水口连接,采暖装置的低温侧出口与系统采暖水出水口连接,吸收式热泵机组内设有采暖季和非采暖季的切换阀门。本发明将溴化锂吸收式热泵应用于蒸氨系统中回收氨汽热量,产生更高品位的热量用于蒸馏或采暖,从而减少能源的消耗。
-
公开(公告)号:CN106766342A
公开(公告)日:2017-05-31
申请号:CN201611138615.6
申请日:2016-12-12
Applicant: 松下制冷(大连)有限公司 , 中冶焦耐(大连)工程技术有限公司
IPC: F25B15/06 , F24D3/18 , C02F1/04 , C02F9/10 , C02F101/16
CPC classification number: F25B15/06 , C02F1/048 , C02F1/44 , C02F1/66 , C02F9/00 , C02F2101/16 , C02F2301/08 , F24D3/18 , F24D2200/126
Abstract: 本发明涉及焦化过程中的氨蒸汽处理领域,提出了一种利用溴化锂吸收式热泵回收蒸氨塔塔顶氨汽余热系统,氨蒸汽排出口通过三通阀分别并行连接分缩器及吸收式热泵,氨蒸汽排出口通过管路分别并行连接蒸发器入口、采暖装置高温侧入口及再生器入口;冷却后的氨蒸汽通过管路经蒸发器出口、采暖装置高温侧出口及再生器出口连接至气液分离器。采暖装置的低温侧入口与系统采暖水回水口连接,采暖装置的低温侧出口与系统采暖水出水口连接,吸收式热泵机组内设有采暖季和非采暖季的切换阀门。本发明将溴化锂吸收式热泵应用于蒸氨系统中回收氨汽热量,产生更高品位的热量用于蒸馏或采暖,从而减少能源的消耗。
-
公开(公告)号:CN215288064U
公开(公告)日:2021-12-24
申请号:CN202120814709.0
申请日:2021-04-21
Applicant: 松下制冷(大连)有限公司
IPC: C02F1/16 , C02F1/06 , C02F103/08
Abstract: 本实用新型涉及海水淡化领域,特别涉及一种溴化锂余热回收型海水淡化系统。该系统包括再生器、冷凝器、吸收器、蒸发器、热交换器、浓溶液泵、冷剂泵、冷剂再循环泵和闪蒸室,闪蒸室分别连接海水入口管路、海水出口管路和乏汽出口管路,闪蒸室乏汽出口管路分两路分别连接至蒸发器和再生器中,蒸发器连接的乏汽凝水出口管路与再生器连接的乏汽凝水出口管路相交汇,交汇后的管路一部分连接至淡水出口管路,一部分通过凝液泵连接至吸收器中,吸收器的热水出水管路连接至闪发罐,闪发罐的蒸汽出口管路连接至闪蒸室中。本实用新型将溴化锂余热回收技术与海水淡化技术结合,极大的降低了海水淡化的能源消耗,实现了能源的多级利用。
-
公开(公告)号:CN212179217U
公开(公告)日:2020-12-18
申请号:CN202020361122.4
申请日:2020-03-20
Applicant: 松下制冷(大连)有限公司
IPC: F24H4/02
Abstract: 本实用新型属于余热回收设备技术领域,公开了一种乏汽余热回收型吸收式热泵机组,包括蒸发器、吸收器、再生器、冷凝器、热交换器、热回收器、冷剂泵、稀溶液泵、浓溶液泵、乏汽凝水箱;其中吸收器、稀溶液泵、热交换器、再生器、浓溶液泵、吸收器按顺序依次连接构成循环机构,所述蒸发器和吸收器连接,冷凝器分别和蒸发器、吸收器连接;所述蒸发器与乏汽凝水箱连接,所述吸收器与热回收器通过管路相连接;所述蒸发器与吸收器分开放置在两个箱体中,通过箱体连接。该机组可大量回收乏汽中的余热,提高能源利用率,实现节能减排。
-
公开(公告)号:CN217952346U
公开(公告)日:2022-12-02
申请号:CN202221854949.4
申请日:2022-07-19
Applicant: 松下制冷(大连)有限公司
Abstract: 本实用新型属于换热设备技术领域,公开了一种工业烟气余热回收换热器。由烟气汇集箱、烟气换热器箱体、烟气换热器管板、烟气余热回收管群、热水升温水室组成,热水升温水室与烟气余热回收管群相对应,且热水升温水室采用一体式连接结构,使烟气温度和烟气换热器壁面保持相对稳定,始终控制烟气温度在酸露点温度以上,从根本上避免了设备的结露腐蚀问题,因此可以大幅降低烟气的排烟温度,换热性能大幅提高,实现换热器的小型化设计,换热器结构更加紧凑,占地面积大幅减少。该换热器实现了工业烟气余热的有效回收,达到了节能减排的目的,实现能源的有效利用,经济效益和社会效益十分显著。
-
公开(公告)号:CN215523569U
公开(公告)日:2022-01-14
申请号:CN202121247010.7
申请日:2021-06-04
Applicant: 松下制冷(大连)有限公司
Abstract: 本实用新型属于空调设备技术领域,具体涉及一种两用两能机组系统,包括:吸收器、蒸发器、再生器、一级冷凝器、二级冷凝器、热源水再生器、烟气余热一级回收装置、烟气余热二级回收装置、烟气余热三级回收装置、采暖热水一级升温换热器、采暖热水二级升温换热器及管路和阀门组成,通过阀门切换可以实现制冷和热泵采暖两用功能,双效制冷、热泵单效采暖、热泵双效采暖三种运行工况可供选择,热源水和烟气两种能源作为机组的驱动热源,两能源可以单独使用,也可以同时使用,一机实现了两用两能,解决了不同能源、不同运转工况时设备投资高、设备占地空间大的难题,实现了能源的梯级高效利用,避免了能源的浪费,提高了机组的换热效率。
-
公开(公告)号:CN215295421U
公开(公告)日:2021-12-24
申请号:CN202120779228.0
申请日:2021-04-16
Applicant: 松下制冷(大连)有限公司
Abstract: 本实用新型属于空调设备技术领域,具体涉及一种高效热水型制冷机组。该制冷机组包括吸收器、蒸发器、冷凝器、再生器、热交换器、稀溶液泵、浓溶液泵、冷剂泵,其中蒸发器连接冷水入口管路和冷水出口管路;吸收器连接冷却水入口管路,吸收器包括吸收器低温冷却区和吸收器高温冷却区,蒸发器包括蒸发器冷水高温降温区和蒸发器冷水低温降温区,再生器包括再生器热源高温回收区和再生器热源低温回收区,通过采用将机组的再生器和吸收器分区的结构和流程,实现热源逐步降温、稀溶液逐步升温和浓缩、浓溶液逐步降温和稀释,加大了溶液的浓度差,有效降低了各分区的溶液循环量,提高了机组的换热效率和热源的换热温差,避免了能源的浪费。
-
-
-
-
-
-
-
-
-