基于自监督学习的眼部黑色素肿瘤识别方法

    公开(公告)号:CN113298065A

    公开(公告)日:2021-08-24

    申请号:CN202110520891.3

    申请日:2021-05-13

    Abstract: 本发明公开了一种基于自监督学习的眼部黑色素肿瘤识别方法。包括:医疗影像数据划分,将数据划分为标注数据和未标注数据两类;将所有未标注数据输入到自监督算法网络中,通过多次迭代不断训练网络参数;提取训练得到残差网络,在该网络的基础上叠加一个特征提取网络,形成复合网络结构,通过训练,得到可用于块级眼部黑色素肿瘤识别的复合网络模型;生成每张标注数据对应的热力图,并由此整合成图像级热力图;最后,提取每张热力图的特征,将特征数据输入到随机森林中进行训练,得到可用于图像级眼部黑色素肿瘤识别的随机森林模型。本发明通过设计肿瘤特征和区域判别的网络特征映射层,使得眼部黑色素肿瘤的识别准确率有了进一步的提升。

    基于自监督学习的眼部黑色素肿瘤识别方法

    公开(公告)号:CN113298065B

    公开(公告)日:2024-06-11

    申请号:CN202110520891.3

    申请日:2021-05-13

    Abstract: 本发明公开了一种基于自监督学习的眼部黑色素肿瘤识别方法。包括:医疗影像数据划分,将数据划分为标注数据和未标注数据两类;将所有未标注数据输入到自监督算法网络中,通过多次迭代不断训练网络参数;提取训练得到残差网络,在该网络的基础上叠加一个特征提取网络,形成复合网络结构,通过训练,得到可用于块级眼部黑色素肿瘤识别的复合网络模型;生成每张标注数据对应的热力图,并由此整合成图像级热力图;最后,提取每张热力图的特征,将特征数据输入到随机森林中进行训练,得到可用于图像级眼部黑色素肿瘤识别的随机森林模型。本发明通过设计肿瘤特征和区域判别的网络特征映射层,使得眼部黑色素肿瘤的识别准确率有了进一步的提升。

Patent Agency Ranking