一种基于Transformer自注意力的可视分析方法及装置

    公开(公告)号:CN116975253A

    公开(公告)日:2023-10-31

    申请号:CN202310750125.5

    申请日:2023-06-25

    Abstract: 本发明公开了一种基于Transformer自注意力的可视分析方法及装置。本发明通过可视分析图表了解深度学习模型的训练层及注意力头的自注意力的整体分布情况及统计规律,并可通过数据链接图和矩阵图具体训练样本查看自注意力在实例中的联系情况;计算机视觉领域的注意力可视分析揭示在训练任务中像素块之间的相互关注性,通过全局归一化和局部归一化两种方式查看不同层和头之间的自注意力分布情况,获得下游任务得出结果的过程。通过本发明,研究人员利用统计分析图表,可直观地观察Transformer模型内部注意力头的值分布情况,选择感兴趣的注意力头。且通过具体的单个注意力头可视化,研究人员可以分析注意力头在具体任务中所发挥的作用,帮助研究人员改进优化模型。

    一种面向天枢人工智能平台的模型结构提取方法及装置

    公开(公告)号:CN116821425A

    公开(公告)日:2023-09-29

    申请号:CN202310750193.1

    申请日:2023-06-25

    Abstract: 本发明公开了一种面向天枢人工智能平台的模型结构提取方法及装置。本发明首先“跟踪/记录”模型上的所有操作,并进一步提取模型计算图节点信息和连接关系,生成模型计算图树形结构。然后基于深度学习模型计算图信息,确定模型结构图中需要保留的层级名称,过滤基本层节点的子节点以及容器节点,同时删除相关的连接边。最后,基于美观性、易交互性和可读性为目标求解图布局方式。本发明不需要借助其他数据信息,完全基于深度神经网络计算图数据信息过滤结构图数据,解决了结构图难以获取的问题。同时,由于仅仅过滤了计算图中不重要节点,因而完整地保留了深度学习模型的主要结构信息。

    一种基于范例学习的文本摘要生成框架系统及方法

    公开(公告)号:CN113673241B

    公开(公告)日:2024-04-09

    申请号:CN202110885791.0

    申请日:2021-08-03

    Abstract: 本发明公开了一种基于范例学习的文本摘要生成框架及方法,允许在摘要生成的过程中参考一些写作范例,框架包括检索和生成两个阶段,检索阶段,给定一个文本,使用对比学习去数据库中检索一些范例,假定越好的摘要在语义空间应该和原文离得更近,检索器的模型使用了孪生网络的结构;生成阶段,提出了一种结合范例进行摘要生成的方法,可以方便的加在目前所有主流的条件生成模型上,为了更好的学习范例,将待生成的摘要和范例摘要按照句子对齐;通过训练好的模型进行预测,即解码阶段,使用集束搜索算法并鼓励那些和范例更相似的束。

    一种模型训练的方法、装置、存储介质及电子设备

    公开(公告)号:CN116451808A

    公开(公告)日:2023-07-18

    申请号:CN202310451948.8

    申请日:2023-04-23

    Abstract: 本说明书公开了一种模型训练的方法、装置、存储介质及电子设备,获取图文对和翻译文本对,将图文对中的描述文本和翻译文本对包含的两种语言文本输入到预设的视觉语言模型中的文本特征提取层中,以通过文本特征提取层得到描述文本和两种语言文本的文本特征,并将图文对中的图像输入到视觉语言模型中的图像特征提取层中,以通过图像特征提取层得到图像的图像特征。根据图文对中图像的图像特征与描述文本的文本特征,以及翻译文本对中包含的两种语言文本的文本特征,确定目标损失;根据目标损失,对视觉语言模型进行训练。

    一种模型部署的方法、装置、存储介质及电子设备

    公开(公告)号:CN116028069A

    公开(公告)日:2023-04-28

    申请号:CN202310111355.7

    申请日:2023-02-07

    Abstract: 本说明书公开了一种模型部署的方法、装置、存储介质及电子设备。所述模型部署的方法包括:获取目标模型以及目标模型对应的配置文件,确定用于部署所述目标模型的目标设备,并在所述目标设备中创建用于部署所述目标模型的目标系统,根据所述配置文件,从指定的环境信息库中获取所述目标模型所需运行环境的数据包,基于所述数据包,在所述目标系统中创建所述目标模型所需的运行环境,根据所述目标系统中创建所述目标模型所需的运行环境,在所述目标系统中部署所述目标模型,以通过部署后的目标模型执行业务。

    一种多任务多目标关联追踪的方法及装置

    公开(公告)号:CN115311608B

    公开(公告)日:2023-03-21

    申请号:CN202211238639.4

    申请日:2022-10-11

    Abstract: 本发明公开一种多任务多目标关联追踪的方法及装置,该方法包括:步骤一,通过系统后台加载视频流地址或采用摄像头实时采集场景的视频流数据,并对视频进行编解码、抽帧、预处理操作;步骤二,利用目标检测模型对视频的图像数据进行实时推理,获取场景中人员和目标物体的检测结果数据;步骤三,通过人员目标追踪方法,对人员检测结果进行跟踪,获取人员进入场景和离开场景的时间,确定检测单位时间段;步骤四,判断人员停留在场景的时间段内,是否检测到目标物体,如果未检测到目标物体,将返回报警信息给平台端。本发明实现了在多人员和多目标的复杂场景,使用人工智能的方式进行智能检测,减少了人为因素的干扰,并且节约了人工成本。

    基于多层级知识蒸馏预训练语言模型自动压缩方法及平台

    公开(公告)号:CN112241455A

    公开(公告)日:2021-01-19

    申请号:CN202011498328.2

    申请日:2020-12-17

    Abstract: 本发明公开了一种基于多层级知识蒸馏的预训练语言模型自动压缩方法及平台,所述方法包括如下步骤:步骤一、构建多层级知识蒸馏,在自注意力单元、隐藏层状态、嵌入层三个不同层级上蒸馏大模型的知识结构;步骤二、训练元学习的知识蒸馏网络,生成多种预训练语言模型的通用压缩架构;步骤三、基于进化算法搜索最佳压缩结构。首先,研究基于元学习的知识蒸馏生成多种预训练语言模型的通用压缩架构;其次,在已训练好的元学习网络基础上,通过进化算法搜索最佳压缩结构,由此得到与任务无关的预训练语言模型的最优通用压缩架构。

    一种基于音色分离的语音生成方法、装置、介质及设备

    公开(公告)号:CN117219055A

    公开(公告)日:2023-12-12

    申请号:CN202311423804.8

    申请日:2023-10-27

    Abstract: 本说明书公开了一种基于音色分离的语音生成方法、装置、介质及设备。所述方法包括:获取目标文本以及目标对象的参考语音;将目标文本输入预先训练的语义特征提取模型,以通过语义表征模型,确定目标文本对应的语义特征,以及,将参考语音输入预先训练的语音风格提取模型,以通过语音风格提取模型,确定参考语音对应的语音风格特征;将语义特征以及语音风格特征输入预先训练的语音生成模型,以通过语音生成模型,根据语义特征,将目标文本转换为具有语音风格特征所对应的语音风格信息的目标语音。

Patent Agency Ranking