-
公开(公告)号:CN115786388B
公开(公告)日:2025-01-14
申请号:CN202211674896.2
申请日:2022-12-26
Applicant: 暨南大学
IPC: C12N15/81 , C12N1/19 , C12N15/70 , C12N1/21 , C12N15/56 , C12N15/54 , C12N15/53 , C12P19/60 , C12R1/865 , C12R1/84 , C12R1/19
Abstract: 本发明属于生物工程技术领域,涉及一种生产2‑O‑α‑D‑吡喃葡萄糖基‑L‑抗坏血酸(AA‑2G)的基因工程菌,以及该基因工程菌的构建方法和应用。本发明所述的生产2‑O‑α‑D‑吡喃葡萄糖基‑L‑抗坏血酸(AA‑2G)的基因工程菌,含有α‑半乳糖苷酶基因(agal)、木糖还原酶基因(XR)、甘露醇脱氢酶基因(MDH)、S136A突变的L‑半乳糖脱氢酶基因(LGDH)、D‑阿拉伯糖‑1,4‑内酯氧化酶基因(ALO)和蔗糖磷酸化酶基因(SPase)。本发明提供了利用该重组基因工程菌生产AA‑2G的方法。该基因工程菌株实现了全细胞合成AA‑2G,大大缩短AA‑2G的合成生产途径,提高了AA‑2G的产率。
-
公开(公告)号:CN119082079A
公开(公告)日:2024-12-06
申请号:CN202411437707.9
申请日:2024-10-15
Applicant: 暨南大学 , 广东方善能动物保健有限公司
Abstract: 本发明公开了一种热稳定性提高的玉米赤霉烯酮水解酶(ZHD101)及其应用。本发明所述的热稳定性提高的玉米赤霉烯酮水解酶,是由氨基酸序列为SEQ ID NO.1的来源于粉红螺旋聚孢霉的玉米赤霉烯酮水解酶随机突变筛选到的突变体玉米赤霉烯酮水解酶,其具有第229位和第170位氨基酸取代。本发明所述的突变体玉米赤霉烯酮水解酶可以自发形成二聚体,在50℃温育下,其半衰期是野生型ZHD101的200%,其热半失活温度提高了7℃,其热熔融温度提高了18.1℃,比现有公开报道的玉米赤霉烯酮水解酶的热稳定性提高,更有利于工业生产的应用。
-
公开(公告)号:CN116083260A
公开(公告)日:2023-05-09
申请号:CN202211675798.0
申请日:2022-12-26
Applicant: 暨南大学
IPC: C12N1/19 , C12N1/21 , C12N15/53 , C12N15/81 , C12N15/70 , C12P17/04 , C12P19/02 , C12R1/84 , C12R1/865 , C12R1/19
Abstract: 本发明属于生物工程技术领域,涉及一种生产L‑抗坏血酸的基因工程菌,以及该基因工程菌的构建方法和应用。本发明所述的生产L‑抗坏血酸的基因工程菌,含有木糖还原酶基因(XR)、甘露醇脱氢酶基因(MDH)、S136A突变的L‑半乳糖脱氢酶基因(LGDH)和D‑阿拉伯糖‑1,4‑内酯氧化酶基因(ALO)。本发明获得了合成L‑抗坏血酸的工程菌株,从而实现由D‑半乳糖经四步生产L‑抗坏血酸,大大缩短L‑抗坏血酸的合成生产途径,提高了L‑抗坏血酸的产率。
-
公开(公告)号:CN111733196A
公开(公告)日:2020-10-02
申请号:CN202010691269.4
申请日:2020-07-17
Applicant: 暨南大学 , 开平牵牛生化制药有限公司
Abstract: 本发明属于生物工程技术领域,涉及一种在高水活度介质中催化合成L-抗坏血酸油酸酯的方法。本发明所述的在高水活度介质中催化合成L-抗坏血酸油酸酯的方法,包括以下步骤:以油酸乙酯和L-抗坏血酸为底物,混合后加入脂肪酶,置于高水活度的水/脂质双相介质中,由重组脂肪酶催化合成L-抗坏血酸油酸酯;所述重组脂肪酶是基于氨基酸序列如SEQ ID NO.1所示的脂肪酶的重组脂肪酶。本发明首次发现CpLIP2脂肪酶可催化油酸乙酯与L-抗坏血酸合成L-抗坏血酸油酸酯,且催化反应可在高水活度(aw>0.9)水/脂质双相介质中进行。本发明所述方法能在不含有机溶剂的水性介质中通过脂肪酶生产L-抗坏血酸油酸酯,反应条件简单,提供了一种有效的生物转化生产绿色油脂的方法。
-
公开(公告)号:CN108107019A
公开(公告)日:2018-06-01
申请号:CN201711347539.4
申请日:2017-12-15
Applicant: 暨南大学
IPC: G01N21/359
Abstract: 本发明公开了一种基于近红外光谱法快速检测玉米中的杂色曲菌素(Ver A)含量的方法。本发明所述的方法包括以下步骤:通过加标方法制备不同Ver A浓度的玉米样品;获取样品的光谱,对采集的原始光谱进行预处理,利用联合区间偏最小二乘法回归法siPLS构建VerA浓度的近红外快速检测模型;再利用模型快速测定Ver A含量。本发明所述方法将近红外光谱法结合多元校正法,无需繁琐的样品前处理,实现快速、准确地检测玉米中VerA含量,是一种无需溶剂的干法分析方法。
-
公开(公告)号:CN116083260B
公开(公告)日:2024-12-27
申请号:CN202211675798.0
申请日:2022-12-26
Applicant: 暨南大学
IPC: C12N1/19 , C12N1/21 , C12N15/53 , C12N15/81 , C12N15/70 , C12P17/04 , C12P19/02 , C12R1/84 , C12R1/865 , C12R1/19
Abstract: 本发明属于生物工程技术领域,涉及一种生产L‑抗坏血酸的基因工程菌,以及该基因工程菌的构建方法和应用。本发明所述的生产L‑抗坏血酸的基因工程菌,含有木糖还原酶基因(XR)、甘露醇脱氢酶基因(MDH)、S136A突变的L‑半乳糖脱氢酶基因(LGDH)和D‑阿拉伯糖‑1,4‑内酯氧化酶基因(ALO)。本发明获得了合成L‑抗坏血酸的工程菌株,从而实现由D‑半乳糖经四步生产L‑抗坏血酸,大大缩短L‑抗坏血酸的合成生产途径,提高了L‑抗坏血酸的产率。
-
公开(公告)号:CN116731997A
公开(公告)日:2023-09-12
申请号:CN202310726638.2
申请日:2023-06-19
Applicant: 暨南大学
Abstract: 本发明属于基因工程和蛋白质工程技术领域,涉及一种定点突变的蔗糖磷酸化酶及其应用。本发明所述的定点突变的蔗糖磷酸化酶,由氨基酸序列如SEQ ID NO.1所示的蔗糖磷酸化酶(BiSPase)中制造点突变获得,所述点突变的突变位点是选自:第141位和/或第197位。优选地,其所述第141位的点突变为苏氨酸突变为半胱氨酸;所述第197位的点突变为甘氨酸突变为半胱氨酸。本发明所提供的蔗糖磷酸化酶变体酶的催化效率明显提高,从而可以提高L‑抗坏血酸葡萄糖苷的产率,降低生产成本,解决了现有技术中蔗糖磷酸化酶部分受体特异性低、酶活低的问题,具有广阔的工业应用前景。
-
公开(公告)号:CN115786388A
公开(公告)日:2023-03-14
申请号:CN202211674896.2
申请日:2022-12-26
Applicant: 暨南大学
IPC: C12N15/81 , C12N1/19 , C12N15/70 , C12N1/21 , C12N15/56 , C12N15/54 , C12N15/53 , C12P19/60 , C12R1/865 , C12R1/84 , C12R1/19
Abstract: 本发明属于生物工程技术领域,涉及一种生产2‑O‑α‑D‑吡喃葡萄糖基‑L‑抗坏血酸(AA‑2G)的基因工程菌,以及该基因工程菌的构建方法和应用。本发明所述的生产2‑O‑α‑D‑吡喃葡萄糖基‑L‑抗坏血酸(AA‑2G)的基因工程菌,含有α‑半乳糖苷酶基因(agal)、木糖还原酶基因(XR)、甘露醇脱氢酶基因(MDH)、S136A突变的L‑半乳糖脱氢酶基因(LGDH)、D‑阿拉伯糖‑1,4‑内酯氧化酶基因(ALO)和蔗糖磷酸化酶基因(SPase)。本发明提供了利用该重组基因工程菌生产AA‑2G的方法。该基因工程菌株实现了全细胞合成AA‑2G,大大缩短AA‑2G的合成生产途径,提高了AA‑2G的产率。
-
-
-
-
-
-
-