-
公开(公告)号:CN117405590A
公开(公告)日:2024-01-16
申请号:CN202311269137.2
申请日:2023-09-28
Applicant: 复旦大学 , 上海集成电路制造创新中心有限公司
IPC: G01N21/01 , H01L23/544 , G01N21/65
Abstract: 本发明提供了一种具有用于拉曼表征的微纳结构的半导体器件结构,包括:待测半导体器件结构,包括:衬底与待测部件;衬底上包括第一测试光入射区域、测试区域、以及第一测试光出射区域;待测部件形成于测试区域中;第一光学结构形成于第一测试光入射区域与第一测试光出射区域中,以使得待测部件嵌入到第一光学结构中;其中,第一光学结构用于使得测试光的传导路径形成“U”型路径。本发明提供的技术方案解决了如何实现拉曼测试中测试光在微纳结构尺度上的方向的改变,并更准确地表征待测部件中的信息、同时避免置于样品下方基底的背景信号带来的噪声的问题。
-
公开(公告)号:CN116314315A
公开(公告)日:2023-06-23
申请号:CN202310211021.7
申请日:2023-03-07
Applicant: 复旦大学
IPC: H01L29/778 , H01L21/335 , H01L29/06
Abstract: 本发明提供了一种基于GaN衬底的pGaN增强型HEMT器件结构及其制备方法,该器件结构包括:衬底结构,所述衬底结构包括第一衬底以及沿远离所述第一衬底的方向上依次形成于所述第一衬底上的缓冲层、GaN层;肖特基势垒二极管,所述肖特基势垒二极管包括形成于所述GaN层内的p+掺杂区和形成于所述p+掺杂区内的n+掺杂区,所述p+掺杂区与所述n+掺杂区接触形成PN结以构成所述肖特基势垒二极管;隔离层,形成于所述GaN层上,且覆盖所述p+掺杂区与所述n+掺杂区;pGaN增强型HEMT器件,形成于部分所述隔离层上;其中,所述p+掺杂区及所述n+掺杂区分别与阳极及阴极电性连接,且所述阳极与所述pGaN增强型HEMT器件的源极电性连接;所述阴极与所述pGaN增强型HEMT器件的漏极电性连接。
-
公开(公告)号:CN115132912A
公开(公告)日:2022-09-30
申请号:CN202210879903.6
申请日:2022-07-25
Applicant: 复旦大学 , 上海集成电路制造创新中心有限公司
Abstract: 本发明提供了一种约瑟夫森结金属层镀膜方法。该方法包括以下步骤:将待镀膜对象移动至工艺腔内;将工艺腔的温度调整至第一温度,对对象进行镀膜;将工艺腔的温度调整至第二温度,并在工艺腔内对对象进行退火,第二温度大于第一温度。本发明的约瑟夫森结金属层镀膜方法通过在第一温度的环境下对对象进行金属层的沉积镀膜,同时通过比第一温度高的第二温度、并在进行沉积的工艺腔内对沉积后的对象进行退火,即对对象进行原位退火,无需移动对象的位置,能够抑制丘状结构的形成和减少球状结构的体积,且能够改善形成的薄膜表面的纹理结构,降低薄膜的方块电阻,达到提升均匀度、降低粗糙度的目的。
-
公开(公告)号:CN115064442A
公开(公告)日:2022-09-16
申请号:CN202210582245.4
申请日:2022-05-26
Applicant: 复旦大学 , 上海集成电路制造创新中心有限公司
IPC: H01L21/336 , H01L29/06 , H01L29/78
Abstract: 本发明提供了一种FinFET底部介质隔离的制备方法,用于对鳍式场效应晶体管的衬底与鳍片之间进行隔离,以此抑制和消除sub‑Fin体泄漏电流以及寄生电容。该方法包括:S1:提供一衬底,并在衬底上形成鳍片;S2:在所述鳍片上淀积第一掩模层,所述第一掩模层包裹所述鳍片的顶面和侧面;S3:以所述第一掩模层为掩模,对所述衬底进行刻蚀,以在所述鳍片下方的衬底中形成一目标区域;S4:对所述目标区域进行热氧化处理,使得所述目标区域以及目标区域下方的部分衬底形成氧化隔离层。
-
公开(公告)号:CN116246956A
公开(公告)日:2023-06-09
申请号:CN202310219238.2
申请日:2023-03-07
Applicant: 复旦大学
IPC: H01L21/335 , H01L29/06 , H01L29/778
Abstract: 本发明提供了一种用于氮化物半导体器件的钝化层的制备方法,包括:将待钝化的样品传至经预处理的反应腔中,并对反应腔进行第一处理;在反应腔中通入前驱体气体,使其吸附在样品表面;在反应腔中通入惰性气体进行吹扫;在反应腔中通入氮氢混合气体,并形成氮氢等离子体,使其与吸附在样品表面的前驱体气体发生反应生成第一钝化层;在反应腔中通入惰性气体,对多余的氮氢等离子体和反应副产物进行吹扫;在反应腔中通入惰性气体,形成第二等离子体,对第一钝化层进行处理,增加其致密度;在反应腔中通入惰性气体,对多余的第二离子体进行吹扫;重复上述步骤,以获得目标厚度的第一钝化层。
-
公开(公告)号:CN116314318A
公开(公告)日:2023-06-23
申请号:CN202310211079.1
申请日:2023-03-07
Applicant: 复旦大学
IPC: H01L29/778 , H01L21/335 , H01L29/06
Abstract: 本法发明提供了一种具有防破坏性击穿功能的GaNHEMT器件结构,包括:衬底,且所述衬底上沿远离衬底的方向上依次形成有第一成核层、GaN缓冲层;pN二极管,所述pN二极管包括分别形成于所述GaN缓冲层表层第一区域与第二区域的p+掺杂区与N+掺杂区,以及分别形成于所述p+掺杂区与N+掺杂区上的阳极与阴极;其中,所述第一区域与第二区域为沿所述GaN缓冲层表面相对的两侧区域;GaNHEMT器件,形成于所述GaN缓冲层上;其中,所述pN二极管的击穿电压低于所述GaNHEMT器件的击穿电压。解决了当在GaNHEMT器件的源极与漏极之间施加大电压或者持续高压应力时,GaNHEMT器件会发生破坏性击穿的问题,从而实现了提高GaNHEMT器件可靠性的效果。
-
公开(公告)号:CN116314317A
公开(公告)日:2023-06-23
申请号:CN202310211066.4
申请日:2023-03-07
Applicant: 复旦大学
IPC: H01L29/778 , H01L21/335 , H01L29/207
Abstract: 本发明提供了一种GaNHEMT器件,包括:GaNHEMT结构;其中,所述GaNHEMT结构的表层包括:第一区域、第二区域以及第三区域;所述第一区域、所述第二区域以及所述第三区域沿水平方向依次排列;p‑GaN材料层,包括:第一p‑GaN层与第二p‑GaN层;所述第一p‑GaN层形成于所述第二区域;所述第二p‑GaN层分布于所述第一区域与所述第三区域;其中,所述p‑GaN材料层中掺杂有镁离子,且仅所述第一p‑GaN层中的镁离子经激光选区退火的方式进行激活。本发明提供的技术方案解,决了刻蚀损伤的问题,避免了刻蚀对漂移区带来的损伤,同时也避免了导致器件退化。
-
公开(公告)号:CN116313796A
公开(公告)日:2023-06-23
申请号:CN202310223423.9
申请日:2023-03-09
Applicant: 复旦大学
IPC: H01L21/335 , H01L29/778 , H01L29/40 , H01L29/423 , H01L29/15
Abstract: 本发明提供了一种GaN HEMT器件及其制备方法,通过在隔离层上外延形成若干层超晶格结构,隔离层的第一部分缺失,使得若干层超晶格结构和隔离层之间形成空腔,位于空腔上方的若干层超晶格结构的部分形成超晶格纳米线,栅金属从四周包裹住超晶格纳米线,其中的每层超晶格结构均包括沿远离所述衬底方向依次形成的AlN层、GaN层;每层GaN/AlN超晶格结构对应形成一导电沟道,进而提高GaN HEMT器件的输出电流,同时,环形栅金属可以从四周完全关断若干层超晶格结构对应的所有导电沟道,提高了GaN HEMT器件的栅控能力以及开关性能,从而实现了提高GaN HEMT器件性能的效果。
-
公开(公告)号:CN116247096A
公开(公告)日:2023-06-09
申请号:CN202310211034.4
申请日:2023-03-07
Applicant: 复旦大学
IPC: H01L29/778 , H01L21/335 , H01L29/06
Abstract: 本发明提供了一种抗反向导通电流的凹栅增强型GaN HEMT结构,包括:阳极、阴极及依次堆叠的衬底、分隔层、凹栅增强型GaN HEMT器件;其中:衬底为SiC,其中包含有P型掺杂区以及N型掺杂区,且P型掺杂区包裹N型掺杂区;凹栅增强型GaN HEMT器件包括在分隔层上依次形成的第一成核层、沟道层以及势垒层;势垒层上开设有第一凹槽,第一凹槽贯穿势垒层,第一凹槽内填充有栅介质层以及栅极金属以形成栅极;且栅极两侧的势垒层上分别形成有源极和漏极;其中:阳极与P型掺杂区电性连接,且阳极电性连接至源极;阴极与N型掺杂区电性连接,且阴极电性连接至漏极;其中:N型掺杂区覆盖漏极下方的区域,且延伸至栅极下方的区域;通过PN结可抑制器件的反向导通电流。
-
公开(公告)号:CN116247094A
公开(公告)日:2023-06-09
申请号:CN202310211017.0
申请日:2023-03-07
Applicant: 复旦大学
IPC: H01L29/778 , H01L21/335 , H01L29/06
Abstract: 本发明提供了一种具有抑制衬底漏电结构的GaNHEMT器件,包括:衬底,以及形成于衬底上的缓冲层;第一P+型掺杂区与第一N+型掺杂区;其中,第一P+型掺杂区形成于缓冲层中;第一N+型掺杂区形成于部分第一P+型掺杂区的表层,且第一P+型掺杂区包裹第一N+型掺杂区;GaNHEMT结构;形成于缓冲层的顶端;其中,GaNHEMT结构包括栅极金属层与漏极金属层;栅极金属层与漏极金属层沿水平方向排列;其中,第一N+型掺杂区覆盖漏极金属层的下方区域,且延伸到第一掺杂区域;第一掺杂区域表征了栅极金属层与漏极金属层之间的下方区域。该方案解决了缓冲层产生漏电通道导致的器件的漏电流的加剧的问题,进而避免出现器件提前击穿现象,实现了器件性能的提高。
-
-
-
-
-
-
-
-
-