GaN HEMT功率器件与驱动模块的集成芯片及制作方法

    公开(公告)号:CN115954357A

    公开(公告)日:2023-04-11

    申请号:CN202310070433.3

    申请日:2023-02-07

    Applicant: 复旦大学

    Abstract: 本发明提供了一种GaN HEMT功率器件与驱动模块的集成芯片,包括:衬底;衬底包括第一区域与第二区域;第一区域与第二区域沿第一方向依次排列;第一方向平行于衬底所在的平面;GaN HEMT功率器件与驱动模块;GaN HEMT功率器件与驱动模块分别形成于第一区域与第二区域;第一外延层与第二外延层;第一外延层与第二外延层沿远离衬底的方向上依次形成于衬底上,且位于驱动模块与衬底之间;其中,第一外延层是N+型掺杂、N‑型掺杂或N型掺杂,第二外延层是P+型掺杂。该技术方案解决了传统的GaN HEMT功率器件与驱动模块的互连方式存在的寄生电容电感的的问题,同时避免了集成之后的GaN HEMT功率器件与驱动模块,在GaN HEMT功率器件的高压应用中可能出现的背栅问题。

    具有栅极保护功能的GaN HEMT器件结构及其制作方法

    公开(公告)号:CN115548116A

    公开(公告)日:2022-12-30

    申请号:CN202211255558.5

    申请日:2022-10-13

    Applicant: 复旦大学

    Abstract: 本发明提供了一种具有栅极保护功能的GaN HEMT器件结构,该器件包括:GaN HEMT器件;第一成核层;所述第一成核层形成于所述GaN HEMT器件上;以及形成于所述第一成核层上的PN二极管;其中,所述PN二极管包括:分别形成于所述第一成核层上的第一区域与第二区域的p+型GaN层与n+型GaN层;以及形成于所述GaN HEMT器件上的阴极与阳极,所述阴极与所述p+型GaN层相连,所述阳极与所述n+型GaN层相连;所述第一区域与所述第二区域沿第一方向相对,所述第一方向表征了纸平面上水平方向;其中,所述PN二极管的击穿电压小于所述GaN HEMT器件的击穿电压。本发明提供的技术方案解决了传统结构GaN HEMT器件的栅极容易被击穿的问题,实现了保护GaN HEMT器件不被破坏的技术效果。

    增强型氮化镓晶体管、制作方法、设备的制备方法及设备

    公开(公告)号:CN115548094A

    公开(公告)日:2022-12-30

    申请号:CN202211255239.4

    申请日:2022-10-13

    Applicant: 复旦大学

    Abstract: 本发明提供了一种增强型氮化镓晶体管,该晶体管包括:衬底,以及沿远离所述衬底方向形成于所述衬底上的成核层、缓冲层、沟道层、势垒层以及p‑GaN层;其中,所述p‑GaN层包括第一p‑GaN层以及第二p‑GaN层;所述第一p‑GaN层形成于栅极区域;所述第二p‑GaN层形成于非栅极区域;源极、漏极以及栅极,所述源极、所述栅极以及所述漏极分别形成于所述p‑GaN层上的源区、所述栅极区域以及漏区;所述栅极包括所述第一p‑GaN层以及形成于所述第一p‑GaN层顶端的栅金属层;以及钝化层,其中,所述第一p‑GaN层包括钝化了的Mg离子;以使得所述栅极在零栅压时不导通。该技术方案解决了如何避免第一p‑GaN层的刻蚀损伤的问题。

    氮化镓功率器件的制作方法、器件以及集成电路

    公开(公告)号:CN115547830A

    公开(公告)日:2022-12-30

    申请号:CN202211255255.3

    申请日:2022-10-13

    Applicant: 复旦大学

    Abstract: 本发明提供了一种氮化镓集成电路的制作方法,该方法包括:提供一衬底;在衬底上沿远离所述衬底的方向依次形成沟道层和势垒层;在势垒层表面沉积硬掩模;刻蚀硬掩模以在硬掩模上形成开孔;在开孔内外延p‑GaN层;在势垒层表面分别沉积金属材料并退火以形成源极和漏极;形成p‑GaN栅极;在p‑GaN栅极的顶端沉积钝化层;形成源极金属互连层与金属场板;源极金属互连层形成于源极的顶端,金属场板形成于p‑GaN栅极的顶端的钝化层的表面;金属场板与源极金属互连层连接;形成漏极金属互连层与栅极金属互连层。本发明提供的技术方案,通过选取外延p‑GaN的方法,有效避免了p‑GaN层的刻蚀工艺导致器件损伤的问题,实现了提升器件输出电流、降低动态导通电阻及提高功率管及栅驱动单元的可靠性的效果。

    氮化物半导体器件及其表面处理系统、方法

    公开(公告)号:CN113964059A

    公开(公告)日:2022-01-21

    申请号:CN202111159636.7

    申请日:2021-09-30

    Applicant: 复旦大学

    Abstract: 本发明提供了一种氮化物半导体材料及其表面处理系统、方法,其中,表面处理系统,包括:气源模块、等离子体源模块、离子过滤部与反应腔;所述气源模块用于:先向所述等离子体源模块通入还原性气体,再在所述反应腔被吹扫后,向所述等离子体源模块通入氮基气体;所述等离子体源模块用于:在所述还原性气体被通入后,将所述还原性气体离子化;在所述氮基气体被通入后,将所述氮基气体离子化;所述离子过滤部用于:对离子化后的物质集合进行离子过滤,过滤后,氢的活性基团附着在材料表面,可与氧化层发生还原反应,在无损的情况下对氧化层进行处理,氮的活性基团附着在材料表面之后,可补充氮空位,减少悬挂键,提高表面质量。

    外延结构的制备方法、氮化镓器件及器件制备方法

    公开(公告)号:CN115621299A

    公开(公告)日:2023-01-17

    申请号:CN202211255257.2

    申请日:2022-10-13

    Applicant: 复旦大学

    Abstract: 本发明提供了一种外延结构的制备方法、氮化镓器件及器件制备方法,外延结构的制备方法包括:提供一衬底并对其进行清洗;将清洗后的衬底放入MOCVD设备的反应腔中并通入H2、NH3进行高温处理;在高温处理后的衬底上生成AlN成核层;在AlN成核层上依次生长缓冲层以及GaN沟道层;在GaN沟道层上外延AlN空间插入层;在AlN空间插入层上外延AlxGaN势垒层;在AlxGaN势垒层上外延AIN钝化层;在AlN钝化层上外延SiN钝化层;上述SiN/AlN/AlxGaN/AlN/GaN层均在MOCVD设备的反应腔中原位进行。由于MOCVD高温生长的AlN为单晶,与GaN的晶格失配很小,因而可以形成较高质量的界面,极大改善其动态特性。使用该外延结构的氮化物半导体器件可以有效抑制器件的“电流崩塌”效应,同时提高氮化物半导体器件的耐压性能。

    增强型氮化镓器件以及器件的制作方法

    公开(公告)号:CN115548095A

    公开(公告)日:2022-12-30

    申请号:CN202211255572.5

    申请日:2022-10-13

    Applicant: 复旦大学

    Abstract: 本发明提供了一种增强型氮化镓器件,包括:衬底;沿远离衬底方向依次形成于衬底上的沟道层以及势垒层;形成于势垒层上的漏极、栅极和源极;钝化层,钝化层位于势垒层上,且覆盖所述栅极、源极与漏极,并填充栅极与源极以及栅极与漏极之间的间隙;金属互连层,贯穿钝化层,且分别与漏极、栅极和源极连接;栅极场板,栅极场板覆盖于栅极顶端的钝化层的表面上,且与源极金属互连层接触;其中,栅极包括:沿远离势垒层的方向依次形成的p‑GaN层、三族氮化物薄层以及栅金属层;三族氮化物薄层的材料是InN、AlN、InGaN或InAlN。因而本发明提供的技术方案可有效抑制器件的栅极漏电,及长期栅极电应力下产生的栅极击穿问题,实现了提高器件栅控能力和可靠性的目的。

Patent Agency Ranking