-
公开(公告)号:CN109766811A
公开(公告)日:2019-05-17
申请号:CN201811650988.0
申请日:2018-12-31
Applicant: 复旦大学
Abstract: 本发明属于雷达图像处理技术领域,具体为一种星载SAR图像中海面船只的端到端检测与识别方法。步骤包括:基于Otsu辅助水图文件的精细海陆分割;自适应多尺度CFAR船只目标自动检测,包括全局、大尺度、小尺度三种尺度CFAR,其中用到基于伽马分布的合成孔径雷达图像海面杂波统计分布模型;自动构建SAR船只标记数据库,数据库包括SAR图像的船只与MMSI码的匹配和目标切片数据集;基于卷积神经网络的船只目标鉴别与分类。本发明精准提取狭窄弯曲河流、海岸线、轮廓等;能很好地解决船只检测虚警率高的问题;通过建立高分辨率船只SAR数据集,为复杂海面船只检测与识别工作提供有力支撑,具有推广应用前景。
-
公开(公告)号:CN108734103A
公开(公告)日:2018-11-02
申请号:CN201810358177.7
申请日:2018-04-20
Applicant: 复旦大学
Abstract: 本发明属于图像和视频处理技术领域,具体为卫星视频中运动目标的检测与跟踪方法。本发明方法包括:采用基于运动和局部杂波建模的检测技术,对在卫星视频中城市里的运动目标--车辆进行检测;采用基于区域增长与多线索的鉴别技术,对检测到的运动目标进行鉴别;采用基于卡尔曼滤波器的目标跟踪技术,以及将检测到的多个车辆目标与正在跟踪的多条轨迹进行关联,进一步对地面运动目标进行跟踪。本发明实用性强,并可用于交通监测、城市监控、军事监测等领域,应用前景广阔。
-
公开(公告)号:CN107145874A
公开(公告)日:2017-09-08
申请号:CN201710336349.6
申请日:2017-05-13
Applicant: 复旦大学
CPC classification number: G06K9/0063 , G06K9/342 , G06K9/44 , G06K9/6202 , G06K2209/21
Abstract: 本发明属于雷达图像处理技术领域,具体为一种复杂背景SAR图像中的舰船目标检测与鉴别方法。本发明的主要步骤为:(1)精细海陆分割;(2)舰船目标高效检测,包括大尺度CFAR和小尺度迭代CFAR,其中利用到了基于广义Gamma分布的合成孔径雷达图像杂波统计分布模型;(3)近岸目标虚警鉴别,包括基于最大似然的虚警鉴别算法和基于极化信息的虚警鉴别算法。本发明能够高效、准确地检测出近岸、港口等复杂背景中的舰船目标;能够利用基于最大似然和基于极化信息的虚警鉴别算法鉴别虚警目标,提高舰船目标检测准确率。本发明提出的舰船检测算法适用于任意的SAR图像背景,鲁棒性高,实时性好,具有推广应用前景。
-
公开(公告)号:CN109766811B
公开(公告)日:2023-05-02
申请号:CN201811650988.0
申请日:2018-12-31
Applicant: 复旦大学
IPC: G06V20/13 , G06V10/46 , G06V10/764 , G06T7/00 , G06T7/136 , G06T7/11 , G06N3/0464 , G06N3/08
Abstract: 本发明属于雷达图像处理技术领域,具体为一种星载SAR图像中海面船只的端到端检测与识别方法。步骤包括:基于Otsu辅助水图文件的精细海陆分割;自适应多尺度CFAR船只目标自动检测,包括全局、大尺度、小尺度三种尺度CFAR,其中用到基于伽马分布的合成孔径雷达图像海面杂波统计分布模型;自动构建SAR船只标记数据库,数据库包括SAR图像的船只与MMSI码的匹配和目标切片数据集;基于卷积神经网络的船只目标鉴别与分类。本发明精准提取狭窄弯曲河流、海岸线、轮廓等;能很好地解决船只检测虚警率高的问题;通过建立高分辨率船只SAR数据集,为复杂海面船只检测与识别工作提供有力支撑,具有推广应用前景。
-
公开(公告)号:CN108734103B
公开(公告)日:2021-08-20
申请号:CN201810358177.7
申请日:2018-04-20
Applicant: 复旦大学
Abstract: 本发明属于图像和视频处理技术领域,具体为卫星视频中运动目标的检测与跟踪方法。本发明方法包括:采用基于运动和局部杂波建模的检测技术,对在卫星视频中城市里的运动目标‑‑车辆进行检测;采用基于区域增长与多线索的鉴别技术,对检测到的运动目标进行鉴别;采用基于卡尔曼滤波器的目标跟踪技术,以及将检测到的多个车辆目标与正在跟踪的多条轨迹进行关联,进一步对地面运动目标进行跟踪。本发明实用性强,并可用于交通监测、城市监控、军事监测等领域,应用前景广阔。
-
公开(公告)号:CN107145874B
公开(公告)日:2021-06-04
申请号:CN201710336349.6
申请日:2017-05-13
Applicant: 复旦大学
Abstract: 本发明属于雷达图像处理技术领域,具体为一种复杂背景SAR图像中的舰船目标检测与鉴别方法。本发明的主要步骤为:(1)精细海陆分割;(2)舰船目标高效检测,包括大尺度CFAR和小尺度迭代CFAR,其中利用到了基于广义Gamma分布的合成孔径雷达图像杂波统计分布模型;(3)近岸目标虚警鉴别,包括基于最大似然的虚警鉴别算法和基于极化信息的虚警鉴别算法。本发明能够高效、准确地检测出近岸、港口等复杂背景中的舰船目标;能够利用基于最大似然和基于极化信息的虚警鉴别算法鉴别虚警目标,提高舰船目标检测准确率。本发明提出的舰船检测算法适用于任意的SAR图像背景,鲁棒性高,实时性好,具有推广应用前景。
-
-
-
-
-