-
公开(公告)号:CN114154538B
公开(公告)日:2022-09-02
申请号:CN202111421620.9
申请日:2021-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明属于工业声音异常检测技术领域,具体涉及一种基于相位编码和设备信息的工业声音异常检测系统。本发明能借助相位信息补足工业声音信号的精细度,获得高精度的声学特征,能够对高精度的声学特征进行建模,着重提升系统对于异常信息的敏感度,同时感知到不同工业设备之间的细微差异,规避了设备之间产生的声学干扰,并对建模结果进行高效率高精度的异常分数判定,具备优秀的工业声音异常检测性能。
-
公开(公告)号:CN113838064B
公开(公告)日:2023-12-22
申请号:CN202111115253.X
申请日:2021-09-23
Applicant: 哈尔滨工程大学
IPC: G06V10/26 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06V20/70 , G06T7/33 , G06N3/0464 , G06N3/047 , G06N3/0455 , G06N3/0475 , G06N3/094 , G06N3/048
Abstract: 本发明属于遥感图像处理技术领域,具体涉及一种基于分支GAN使用多时相遥感数据的云去除方法。本发明设计了一个深度卷积编码器‑解码器网络模型用于遥感图像云检测,以及一个分支GAN模型用于遥感图像的云去除,在保证云去除效果的同时,提升了重建像素的分辨率。本发明利用最大池化索引来进行输入图像特征图的非线性上采样,减少了端到端训练的参数量,提高了网络训练的时间;采用分支UNet结构来融合多时相遥感图像的特征信息,通过共享底层的语义信息,有效提高遥感图像云去除的精度。
-
公开(公告)号:CN117079668A
公开(公告)日:2023-11-17
申请号:CN202310902397.2
申请日:2023-07-21
Applicant: 哈尔滨工程大学
IPC: G10L25/30 , G06F18/213 , G06N3/0464 , G06N3/08 , G10L25/51 , G10L25/24
Abstract: 本发明属于异常声音检测技术领域,具体涉及一种利用元数据分层信息约束自监督分类的异音检测方法。本发明使用元数据分层信息结构约束神经网络对训练音频的低维特征和高维特征的学习,充分利用伴随音频文件的元数据,挖掘元数据属性对声学特征的影响,以使神经网络能学习到域偏移在音频特征上引起的变化,进而提高工业异音检测系统在域偏移条件下的性能。同时,本发明提出了一种以属性组为中心的异常分数计算方法,用于在域偏移条件下评估测试样本的异常分数,以判断测试音频是否正常。与现有技术相比,本发明的方法能够更精细地学习到音频特征,减轻域偏移在异常声音检测中带来的问题。
-
公开(公告)号:CN116741204A
公开(公告)日:2023-09-12
申请号:CN202310768780.3
申请日:2023-06-28
Applicant: 哈尔滨工程大学
IPC: G10L25/51 , G10L25/24 , G06F18/214
Abstract: 本发明公开了一种基于层次元数据信息约束的异常声音检测方法,将待检测声音的音频波形转换为Log‑Mel谱频特征,然后输入至预先训练的特征提取器中,得到高级音频特征#imgabs0#计算高级音频特征#imgabs1#与待检测声音对应机器ID的每个属性组中心cm的马氏距离,选取其中最小值作为异常分数A,M为对应机器ID下的属性组个数,当A大于给定阈值时,判定待检测声音为异常声音;所述属性组中心cm为训练集音频片段经过预先训练的特征提取器得到的高级音频特征的平均值;本发明设计了元数据信息树结构,充分利用元数据信息提取更精细的特征,有效地提升异音检测系统的性能,解决现有工业异音检测方法在域偏移下性能不足,检测结果可信度低的问题。
-
公开(公告)号:CN114154538A
公开(公告)日:2022-03-08
申请号:CN202111421620.9
申请日:2021-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明属于工业声音异常检测技术领域,具体涉及一种基于相位编码和设备信息的工业声音异常检测系统。本发明能借助相位信息补足工业声音信号的精细度,获得高精度的声学特征,能够对高精度的声学特征进行建模,着重提升系统对于异常信息的敏感度,同时感知到不同工业设备之间的细微差异,规避了设备之间产生的声学干扰,并对建模结果进行高效率高精度的异常分数判定,具备优秀的工业声音异常检测性能。
-
公开(公告)号:CN113838064A
公开(公告)日:2021-12-24
申请号:CN202111115253.X
申请日:2021-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于遥感图像处理技术领域,具体涉及一种基于分支GAN使用多时相遥感数据的云去除方法。本发明设计了一个深度卷积编码器‑解码器网络模型用于遥感图像云检测,以及一个分支GAN模型用于遥感图像的云去除,在保证云去除效果的同时,提升了重建像素的分辨率。本发明利用最大池化索引来进行输入图像特征图的非线性上采样,减少了端到端训练的参数量,提高了网络训练的时间;采用分支UNet结构来融合多时相遥感图像的特征信息,通过共享底层的语义信息,有效提高遥感图像云去除的精度。
-
-
-
-
-