-
公开(公告)号:CN113838064B
公开(公告)日:2023-12-22
申请号:CN202111115253.X
申请日:2021-09-23
Applicant: 哈尔滨工程大学
IPC: G06V10/26 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06V20/70 , G06T7/33 , G06N3/0464 , G06N3/047 , G06N3/0455 , G06N3/0475 , G06N3/094 , G06N3/048
Abstract: 本发明属于遥感图像处理技术领域,具体涉及一种基于分支GAN使用多时相遥感数据的云去除方法。本发明设计了一个深度卷积编码器‑解码器网络模型用于遥感图像云检测,以及一个分支GAN模型用于遥感图像的云去除,在保证云去除效果的同时,提升了重建像素的分辨率。本发明利用最大池化索引来进行输入图像特征图的非线性上采样,减少了端到端训练的参数量,提高了网络训练的时间;采用分支UNet结构来融合多时相遥感图像的特征信息,通过共享底层的语义信息,有效提高遥感图像云去除的精度。
-
公开(公告)号:CN113838064A
公开(公告)日:2021-12-24
申请号:CN202111115253.X
申请日:2021-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于遥感图像处理技术领域,具体涉及一种基于分支GAN使用多时相遥感数据的云去除方法。本发明设计了一个深度卷积编码器‑解码器网络模型用于遥感图像云检测,以及一个分支GAN模型用于遥感图像的云去除,在保证云去除效果的同时,提升了重建像素的分辨率。本发明利用最大池化索引来进行输入图像特征图的非线性上采样,减少了端到端训练的参数量,提高了网络训练的时间;采用分支UNet结构来融合多时相遥感图像的特征信息,通过共享底层的语义信息,有效提高遥感图像云去除的精度。
-