互耦条件下基于张量实值子空间的双基地MIMO雷达角度估计方法

    公开(公告)号:CN104931931B

    公开(公告)日:2017-11-21

    申请号:CN201510253200.2

    申请日:2015-05-18

    Abstract: 本发明属于双基地MIMO雷达系统技术领域,具体涉及一种互耦条件下基于张量实值子空间的双基地MIMO雷达角度估计方法。本发明包括:发射阵列发射相互正交的相位编码信号;在三阶测量张量中提取一个子张量以消除未知互耦的影响;将子张量转换成为实值的,并利用高阶奇异值分解构造实值信号子空间;利用实值信号子空间实现对未知互耦误差条件下双基地MIMO雷达中目标联合DOD和DOA的估计。本发明考虑了接收数据固有的多维结构,利用HOSVD技术比传统SVD/EVD方法更有效地抑制了噪声,角度估计性能得以提高,本发明比相似MUSIC算法和相似ESPRIT算法都具有更好的角度估计性能。

    互耦条件下基于张量实值子空间的双基地MIMO雷达角度估计方法

    公开(公告)号:CN104931931A

    公开(公告)日:2015-09-23

    申请号:CN201510253200.2

    申请日:2015-05-18

    CPC classification number: G01S13/003 G01S7/02

    Abstract: 本发明属于双基地MIMO雷达系统技术领域,具体涉及一种互耦条件下基于张量实值子空间的双基地MIMO雷达角度估计方法。本发明包括:发射阵列发射相互正交的相位编码信号;在三阶测量张量中提取一个子张量以消除未知互耦的影响;将子张量转换成为实值的,并利用高阶奇异值分解构造实值信号子空间;利用实值信号子空间实现对未知互耦误差条件下双基地MIMO雷达中目标联合DOD和DOA的估计。本发明考虑了接收数据固有的多维结构,利用HOSVD技术比传统SVD/EVD方法更有效地抑制了噪声,角度估计性能得以提高,本发明比相似MUSIC算法和相似ESPRIT算法都具有更好的角度估计性能。

    基于实域加权最小化l1范数方法的MIMO雷达系统DOA估计方法

    公开(公告)号:CN104865556B

    公开(公告)日:2018-07-24

    申请号:CN201510253261.9

    申请日:2015-05-18

    Abstract: 本发明涉及MIMO雷达系统技术领域,特别涉及MIMO雷达系统DOA估计的应用,具体说是一种基于实域加权最小化l1范数方法的MIMO雷达系统DOA估计方法。本发明包括:利用降维矩阵对接收数据进行降维处理;进行奇异值分解并获得稀疏表示框架下的相应模型;利用实域导向矢量和它相应噪声子空间的正交性,设计一个对角线元素与实域MUSIC谱相对应的权值矩阵以解决MMV问题;实现对MIMO雷达系统中目标DOA的估计。本发明通过降维转换SNR增益得到加强,同时所设计的加权l1范数更好地接近了l0范数并且强化了稀疏解,比l1‑SVD和RV l1‑SVD算法有更高的分辨率。

    基于实域加权最小化l1范数方法的MIMO雷达系统DOA估计方法

    公开(公告)号:CN104865556A

    公开(公告)日:2015-08-26

    申请号:CN201510253261.9

    申请日:2015-05-18

    CPC classification number: G01S7/02

    Abstract: 本发明涉及MIMO雷达系统技术领域,特别涉及MIMO雷达系统DOA估计的应用,具体说是一种基于实域加权最小化l1范数方法的MIMO雷达系统DOA估计方法。本发明包括:利用降维矩阵对接收数据进行降维处理;进行奇异值分解并获得稀疏表示框架下的相应模型;利用实域导向矢量和它相应噪声子空间的正交性,设计一个对角线元素与实域MUSIC谱相对应的权值矩阵以解决MMV问题;实现对MIMO雷达系统中目标DOA的估计。本发明通过降维转换SNR增益得到加强,同时所设计的加权l1范数更好地接近了l0范数并且强化了稀疏解,比l1-SVD和RV l1-SVD算法有更高的分辨率。

Patent Agency Ranking