-
公开(公告)号:CN104931931B
公开(公告)日:2017-11-21
申请号:CN201510253200.2
申请日:2015-05-18
Applicant: 哈尔滨工程大学
IPC: G01S7/02
Abstract: 本发明属于双基地MIMO雷达系统技术领域,具体涉及一种互耦条件下基于张量实值子空间的双基地MIMO雷达角度估计方法。本发明包括:发射阵列发射相互正交的相位编码信号;在三阶测量张量中提取一个子张量以消除未知互耦的影响;将子张量转换成为实值的,并利用高阶奇异值分解构造实值信号子空间;利用实值信号子空间实现对未知互耦误差条件下双基地MIMO雷达中目标联合DOD和DOA的估计。本发明考虑了接收数据固有的多维结构,利用HOSVD技术比传统SVD/EVD方法更有效地抑制了噪声,角度估计性能得以提高,本发明比相似MUSIC算法和相似ESPRIT算法都具有更好的角度估计性能。
-
公开(公告)号:CN104931931A
公开(公告)日:2015-09-23
申请号:CN201510253200.2
申请日:2015-05-18
Applicant: 哈尔滨工程大学
IPC: G01S7/02
CPC classification number: G01S13/003 , G01S7/02
Abstract: 本发明属于双基地MIMO雷达系统技术领域,具体涉及一种互耦条件下基于张量实值子空间的双基地MIMO雷达角度估计方法。本发明包括:发射阵列发射相互正交的相位编码信号;在三阶测量张量中提取一个子张量以消除未知互耦的影响;将子张量转换成为实值的,并利用高阶奇异值分解构造实值信号子空间;利用实值信号子空间实现对未知互耦误差条件下双基地MIMO雷达中目标联合DOD和DOA的估计。本发明考虑了接收数据固有的多维结构,利用HOSVD技术比传统SVD/EVD方法更有效地抑制了噪声,角度估计性能得以提高,本发明比相似MUSIC算法和相似ESPRIT算法都具有更好的角度估计性能。
-
公开(公告)号:CN105093185B
公开(公告)日:2017-10-03
申请号:CN201510519920.9
申请日:2015-08-23
Applicant: 哈尔滨工程大学
IPC: G01S7/02
Abstract: 本发明提供一种基于稀疏表示的单基地多输入多输出雷达目标波达方向估计方法,首先建立单基地MIMO雷达系统的接收信号模型,构造降维转换矩阵进行降维处理;然后利用酉变换矩阵将降维后的接收数据矩阵变为实域的,设计实值扩展数据矩阵并获得其协方差矩阵;根据Khatri‑Rao积,将实值协方差矩阵向量化以解决多测量矢量(MMV)问题,并得到稀疏表示框架下的相应模型;最后设计权值矩阵获得估计参数并构造实值l1范数最小化框架,得到恢复矩阵,寻找恢复矩阵中的非零行,实现对MIMO雷达系统中目标DOA的估计。本发明计算复杂度明显降低,具有更高的角度分辨率和更好的角度估计性能,并且具有最低的SNR临界值。
-
公开(公告)号:CN105093185A
公开(公告)日:2015-11-25
申请号:CN201510519920.9
申请日:2015-08-23
Applicant: 哈尔滨工程大学
IPC: G01S7/02
CPC classification number: G01S7/02
Abstract: 本发明提供一种基于稀疏表示的单基地多输入多输出雷达目标波达方向估计方法,首先建立单基地MIMO雷达系统的接收信号模型,构造降维转换矩阵进行降维处理;然后利用酉变换矩阵将降维后的接收数据矩阵变为实域的,设计实值扩展数据矩阵并获得其协方差矩阵;根据Khatri-Rao积,将实值协方差矩阵向量化以解决多测量矢量(MMV)问题,并得到稀疏表示框架下的相应模型;最后设计权值矩阵获得估计参数并构造实值l1范数最小化框架,得到恢复矩阵,寻找恢复矩阵中的非零行,实现对MIMO雷达系统中目标DOA的估计。本发明计算复杂度明显降低,具有更高的角度分辨率和更好的角度估计性能,并且具有最低的SNR临界值。
-
-
-