-
公开(公告)号:CN110929794B
公开(公告)日:2022-12-13
申请号:CN201911188526.6
申请日:2019-11-28
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04
Abstract: 本发明属于侧扫声呐图像识别技术领域,具体涉及一种基于多任务学习的侧扫声呐图像分类方法。本发明结合了多任务学习思想和卷积神经网络方法,使用卷积神经网络进行自动特征提取,相对于传统的人工设置的特征提取器,可以提取出人眼感受不到的那些重要特征,也能减小侧扫声呐图像噪声、图像边缘缺失、图像特征变形等因素对特征提取的影响。本发明利用多任务学习的思想,通过引入光学图像分类任务,可以丰富侧扫声呐图像的特征空间,避免了样本过少时特征提取不完备造成的过拟合的问题;通过本发明的方法,可以解决侧扫声呐图像样本少、特征提取困难时分类效果差的问题,具有一定的工程和研究价值。
-
公开(公告)号:CN109785260A
公开(公告)日:2019-05-21
申请号:CN201910026679.4
申请日:2019-01-11
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明属于侧扫声呐图像处理技术领域,具体涉及一种针对侧扫声呐图像的非线性增强方法。本发明包括如下步骤:从原始侧扫声呐数据文件中获取原始图像,然后对原始图像依次进行灰度归一化、邻域极值抑制和高斯平滑,再针对平滑后的图像计算低灰度区最大值、高灰度区最小值和中间灰度区,最后对上述三个区域分别进行非线性校正,得到增强后的图像。通过上述步骤,本发明能够快速、有效、低成本地实现对原始侧扫声呐图像有效信号的增强和无效信号的抑制,增强图像局部特征的对比度,并且保持原始图像的边缘和灰度分布的单调性,不引伪边缘等。
-
公开(公告)号:CN111445395A
公开(公告)日:2020-07-24
申请号:CN202010140389.5
申请日:2020-03-03
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于深度学习的侧扫声呐瀑布图像中间区域修复方法,制作样本时,对原始侧扫声呐瀑布图像进行斜距校正后,从瀑布图像的左右两侧不含模糊区域的图像中截取图像并进行缩放来作为真实图像,并制作相同大小的掩模图像,根据掩模图像可以确定待修复图像中需要修复的中间区域。通过深度学习训练得到了深度学习网络的模型参数,对于要修复的声呐瀑布图像,则可以直接输入到该网络模型中,即可得到修复后的声呐瀑布图像,修复后的图像能够消除斜距校正后中间区域的模糊,并实现图像中间不连续区域的平滑过渡,可以提升图像的整体视觉效果,还可以用于后续声呐瀑布图像的进一步处理,对于声呐瀑布图像的实际应用有着重要意义。
-
公开(公告)号:CN110929794A
公开(公告)日:2020-03-27
申请号:CN201911188526.6
申请日:2019-11-28
Applicant: 哈尔滨工程大学
Abstract: 本发明属于侧扫声呐图像识别技术领域,具体涉及一种基于多任务学习的侧扫声呐图像分类方法。本发明结合了多任务学习思想和卷积神经网络方法,使用卷积神经网络进行自动特征提取,相对于传统的人工设置的特征提取器,可以提取出人眼感受不到的那些重要特征,也能减小侧扫声呐图像噪声、图像边缘缺失、图像特征变形等因素对特征提取的影响。本发明利用多任务学习的思想,通过引入光学图像分类任务,可以丰富侧扫声呐图像的特征空间,避免了样本过少时特征提取不完备造成的过拟合的问题;通过本发明的方法,可以解决侧扫声呐图像样本少、特征提取困难时分类效果差的问题,具有一定的工程和研究价值。
-
公开(公告)号:CN111028154B
公开(公告)日:2023-05-09
申请号:CN201911299916.0
申请日:2019-12-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种地形崎岖不平海底的侧扫声呐图像匹配拼接方法,包括对侧扫声呐图像进行预处理,使其能够与实际的海底景象信息对应;将大量侧扫声呐图像进行标注获取侧扫声呐图像语义分割的数据集;搭建语义分割神经网络,并对语义分割神经网络进行训练;训练完成的语义分割网络对需要进行匹配拼接的侧扫声呐图像进行分割,利用分割后的图像进行模板匹配获得两张侧扫声呐图像的相对位置信息;最后根据获得相对位置信息对预处理之后的侧扫声呐图像进行融合拼接。通过本发明的方法,可以解决目前侧扫声呐图像匹配方法无法对地形崎岖不平海底的侧扫声呐图像进行匹配的问题。
-
公开(公告)号:CN111445395B
公开(公告)日:2023-03-21
申请号:CN202010140389.5
申请日:2020-03-03
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于深度学习的侧扫声呐瀑布图像中间区域修复方法,制作样本时,对原始侧扫声呐瀑布图像进行斜距校正后,从瀑布图像的左右两侧不含模糊区域的图像中截取图像并进行缩放来作为真实图像,并制作相同大小的掩模图像,根据掩模图像可以确定待修复图像中需要修复的中间区域。通过深度学习训练得到了深度学习网络的模型参数,对于要修复的声呐瀑布图像,则可以直接输入到该网络模型中,即可得到修复后的声呐瀑布图像,修复后的图像能够消除斜距校正后中间区域的模糊,并实现图像中间不连续区域的平滑过渡,可以提升图像的整体视觉效果,还可以用于后续声呐瀑布图像的进一步处理,对于声呐瀑布图像的实际应用有着重要意义。
-
公开(公告)号:CN109785260B
公开(公告)日:2022-03-18
申请号:CN201910026679.4
申请日:2019-01-11
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明属于侧扫声呐图像处理技术领域,具体涉及一种针对侧扫声呐图像的非线性增强方法。本发明包括如下步骤:从原始侧扫声呐数据文件中获取原始图像,然后对原始图像依次进行灰度归一化、邻域极值抑制和高斯平滑,再针对平滑后的图像计算低灰度区最大值、高灰度区最小值和中间灰度区,最后对上述三个区域分别进行非线性校正,得到增强后的图像。通过上述步骤,本发明能够快速、有效、低成本地实现对原始侧扫声呐图像有效信号的增强和无效信号的抑制,增强图像局部特征的对比度,并且保持原始图像的边缘和灰度分布的单调性,不引伪边缘等。
-
公开(公告)号:CN111028154A
公开(公告)日:2020-04-17
申请号:CN201911299916.0
申请日:2019-12-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种地形崎岖不平海底的侧扫声呐图像匹配拼接方法,包括对侧扫声呐图像进行预处理,使其能够与实际的海底景象信息对应;将大量侧扫声呐图像进行标注获取侧扫声呐图像语义分割的数据集;搭建语义分割神经网络,并对语义分割神经网络进行训练;训练完成的语义分割网络对需要进行匹配拼接的侧扫声呐图像进行分割,利用分割后的图像进行模板匹配获得两张侧扫声呐图像的相对位置信息;最后根据获得相对位置信息对预处理之后的侧扫声呐图像进行融合拼接。通过本发明的方法,可以解决目前侧扫声呐图像匹配方法无法对地形崎岖不平海底的侧扫声呐图像进行匹配的问题。
-
公开(公告)号:CN109118458A
公开(公告)日:2019-01-01
申请号:CN201811310145.6
申请日:2018-11-06
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明涉及一种低照度彩色图像增强方法,本发明基于Retinex理论进行低照度彩色图像增强,假设原始图像是由光照图像与反射图像乘积得到,用图像平滑获得原始图像的平滑的图;将获得的平滑图加一个常数得到需要的光照图;原始彩色图像的三个通道图像分别除以光照图得到三个通道图像的反射图像;用原始图像像素灰度的均值加上一个常数作为新的光照图;最后将三个通道反射图与新的光照图相乘然后合并三通道获得最终的增强图像。本发明解决现有基于Retinex理论进行低照度图像增强算法在增强图像的同时产生光晕与黑暗区域颜色出现马赛克现象的问题,得到一个更加自然的增强图像,算法步骤和理论简单,编程易于实现,保证算法的实时性。
-
-
-
-
-
-
-
-