基于深度学习的声呐图像水下管道检测方法

    公开(公告)号:CN110060248A

    公开(公告)日:2019-07-26

    申请号:CN201910321418.5

    申请日:2019-04-22

    Abstract: 本发明属于深度学习与声呐图像处理领域,具体涉及一种基于深度学习的声呐图像水下管道检测方法。本发明包括如下步骤:构建侧扫声呐图像样本数据集;对数据集中的图像进行预处理;构建用于判别水下管道的铺设方式和检测管道位置的深度卷积神经网络,并训练网络的权重得到训练好的网络;对预处理后的侧扫声呐图中水下管道铺设方式进行判断和给出位置的包围盒集合;根据包围盒集合的中心点得到水下管道的中心位置线,根据包围盒集合覆盖区域分割出目标。本专利方法与现有的方法相比,能够更准确对水下管道的铺设方式进行判定,更精准地检测出水下管道的位置及其中心位置线,泛化能力强,而且在并行加速单元的硬件支持下,检测速度快、效率高。

    一种基于深度学习的海参检测和双目视觉定位方法

    公开(公告)号:CN108876855A

    公开(公告)日:2018-11-23

    申请号:CN201810519615.3

    申请日:2018-05-28

    Abstract: 本发明提出了一种基于深度学习的海参检测和双目视觉定位方法,适用于海洋牧场的水下机器人对海底海参捕捞任务,主要包括以下步骤:通过对双目摄像头进行标定获得摄像机的内外参数;对双目摄像头进行校正,使得左右视图的成像原点坐标一致、两摄像头光轴平行、左右成像平面共面、对极线行对齐;利用标定好的双目摄像头进行海底图像数据采集;对采集到的图像数据进行基于白平衡补偿的暗通道优先算法进行图像增强;对图像增强的海底图像进行基于深度学习的海参目标检测;对经过图像增强和深度学习获得目标二维回归框信息的图像进行双目立体特征点匹配算法得出目标的三维定位坐标信息。本发明可实现水下海参珍品的精确定位,且不需要人工参与。

    基于深度学习的声呐图像水下管道检测方法

    公开(公告)号:CN110060248B

    公开(公告)日:2022-11-11

    申请号:CN201910321418.5

    申请日:2019-04-22

    Abstract: 本发明属于深度学习与声呐图像处理领域,具体涉及一种基于深度学习的声呐图像水下管道检测方法。本发明包括如下步骤:构建侧扫声呐图像样本数据集;对数据集中的图像进行预处理;构建用于判别水下管道的铺设方式和检测管道位置的深度卷积神经网络,并训练网络的权重得到训练好的网络;对预处理后的侧扫声呐图中水下管道铺设方式进行判断和给出位置的包围盒集合;根据包围盒集合的中心点得到水下管道的中心位置线,根据包围盒集合覆盖区域分割出目标。本专利方法与现有的方法相比,能够更准确对水下管道的铺设方式进行判定,更精准地检测出水下管道的位置及其中心位置线,泛化能力强,而且在并行加速单元的硬件支持下,检测速度快、效率高。

    一种针对侧扫声呐图像的非线性增强方法

    公开(公告)号:CN109785260A

    公开(公告)日:2019-05-21

    申请号:CN201910026679.4

    申请日:2019-01-11

    Abstract: 本发明属于侧扫声呐图像处理技术领域,具体涉及一种针对侧扫声呐图像的非线性增强方法。本发明包括如下步骤:从原始侧扫声呐数据文件中获取原始图像,然后对原始图像依次进行灰度归一化、邻域极值抑制和高斯平滑,再针对平滑后的图像计算低灰度区最大值、高灰度区最小值和中间灰度区,最后对上述三个区域分别进行非线性校正,得到增强后的图像。通过上述步骤,本发明能够快速、有效、低成本地实现对原始侧扫声呐图像有效信号的增强和无效信号的抑制,增强图像局部特征的对比度,并且保持原始图像的边缘和灰度分布的单调性,不引伪边缘等。

    一种针对侧扫声呐图像的非线性增强方法

    公开(公告)号:CN109785260B

    公开(公告)日:2022-03-18

    申请号:CN201910026679.4

    申请日:2019-01-11

    Abstract: 本发明属于侧扫声呐图像处理技术领域,具体涉及一种针对侧扫声呐图像的非线性增强方法。本发明包括如下步骤:从原始侧扫声呐数据文件中获取原始图像,然后对原始图像依次进行灰度归一化、邻域极值抑制和高斯平滑,再针对平滑后的图像计算低灰度区最大值、高灰度区最小值和中间灰度区,最后对上述三个区域分别进行非线性校正,得到增强后的图像。通过上述步骤,本发明能够快速、有效、低成本地实现对原始侧扫声呐图像有效信号的增强和无效信号的抑制,增强图像局部特征的对比度,并且保持原始图像的边缘和灰度分布的单调性,不引伪边缘等。

Patent Agency Ranking